
AlignPlus® 4.3
User Manual

2021January13

Legal Notices
The software described in this document is furnished under license, and may be used or copied only in accordance with the
terms of such license and with the inclusion of the copyright notice shown on this page. Neither the software, this document,
nor any copies thereof may be provided to, or otherwise made available to, anyone other than the licensee. Title to, and
ownership of, this software remains with Cognex Corporation or its licensor. Cognex Corporation assumes no responsibility
for the use or reliability of its software on equipment that is not supplied by Cognex Corporation. Cognex Corporation makes
no warranties, either express or implied, regarding the described software, its merchantability, non-infringement or its fitness
for any particular purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cognex Corporation. Cognex Corporation is not responsible for any errors that may be present in either this document or the
associated software.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, nor transferred to any
other media or language without the written permission of Cognex Corporation.

Copyright © 2020 Cognex Corporation. All Rights Reserved.

Portions of the hardware and software provided by Cognex may be covered by one or more U.S. and foreign patents, as well
as pending U.S. and foreign patents listed on the Cognex web site at: cognex.com/patents.

The following are registered trademarks of Cognex Corporation:

Cognex, 2DMAX, Advantage, AlignPlus, Assemblyplus, Check it with Checker, Checker, Cognex Vision for Industry,
Cognex VSOC, CVL, DataMan, DisplayInspect, DVT, EasyBuilder, Hotbars, IDMax, In-Sight, Laser Killer, MVS-8000,
OmniView, PatFind, PatFlex, PatInspect, PatMax, PatQuick, SensorView, SmartView, SmartAdvisor, SmartLearn, UltraLight,
Vision Solutions, VisionPro, VisionView

The following are trademarks of Cognex Corporation:

The Cognex logo, 1DMax, 3D-Locate, 3DMax, BGAII, CheckPoint, Cognex VSoC, CVC-1000, FFD, iLearn, In-Sight (design
insignia with cross-hairs), In-Sight 2000, InspectEdge, Inspection Designer, MVS, NotchMax, OCRMax, PatMax RedLine,
ProofRead, SmartSync, ProfilePlus, SmartDisplay, SmartSystem, SMD4, VisiFlex, Xpand

Portions copyright © Microsoft Corporation. All rights reserved.

Portions copyright © MadCap Software, Inc. All rights reserved.

Other product and company trademarks identified herein are the trademarks of their respective owners.

2

Legal Notices

http://www.cognex.com/patents

Table of Contents

Legal Notices 2
Table of Contents 3
AlignPlus Overview 8
Release Info 10
About This Release 10
Release History 11
AlignPlus 4.0 11
AlignPlus 4.0.1 11
AlignPlus 4.2.0 12
AlignPlus 4.3.0 13

Installation 15

Create an AlignPlus Project 17
Create an Empty Project 17
What is ConfigurationWizard 18
Alignment System 19
Devices 21
Calibrations 22
Finders 30
Parts 32
Alignments 33
Settings 36

Things to Consider before Configuration 37
Devices 37
Calibration 38
Feature Finding 41
Part 41
Alignment 41

Setup Examples 42
Application I_Align to Base 42
Application II_Align ToGripper 43
Application III_Two Stages Alignment 43
Application IV_Assembly Blind Transfer 44
Application V_Assembly Guided Pick 45
Application VI_Assembly Guided Place 46
Application VII_Single Part Inspection 47
Application VIII_Two Parts Inspection 48

Export and Import Wizard Configuration 49
Export wizard configuration 49
Import wizard configuration 49

Home Page 50
Title Bar 50
Work Mode 50
Mode View 50

3

Table of Contents

MainWindow 51
Log View 53
Title Bar 53
Auto On 54
Status Monitor 54
Image Play Back 55
Help 56
Language Change 56
User Change 57
Exit 57

AutoMode 58
Manual Mode 59
SN Input 59
Set Display 60
Command Buttons 61

SetupMode 63
Display 65
Multiple Display 65
Alignment Master Display 68
CalibrationMaster Display 71

Calibration 74
Calibration Navigation 74
Cameras and Lights 74
Hand-eye Calibration 74
Cross Calibration 75
Calibration Results 75
Cam Pos Adjustment 75

GigE Camera Configuration 75
Cameras and Lights for Calibration 78
Global Settings 78
Exposure Settings 80

Hand-eye Calibration 81
Hand-eye Calibration Training Parameters 81
Looping Parameters 87

Motion Analysis 92
Motion Analysis Process 92
Motion Analysis Setup 92
Motion Analysis Image Display 93
Motion Analysis PoseGenerator 94
Motion Analysis Result 102

Cross Calibration Training Parameter 104
Checkerboard Settings 104
Parameters 105
Change Checkerboard Parameters 107

Calibration Results 109
Cam Pose Adjustment 110
One TimeCalibration Results 112

Alignment 115

4

Table of Contents

Aligment Navigation 115
Camera and Lights for Alignment 116
Global Settings 116
Exposure Settings 118

Configure Features Finder 119
Point Features Finder 120
Line Features Finder 134
Generic Features Finder 142
Multi-Part Features Finder 148
Multiple Features 155
CustomMulti Camera ToolBlock Finder 158
AOI Feature Extraction 162

Custom Pose Computation 165
Alignment Custom Pose Computation 165
Assembly Custom Pose Computation 167

Manual Align Config 167
Settings 168
Run Time Edit Window 168

L-Check 171
Layout Graphic 172
Feature Points 173
Measurements 174
Result Display 175
Reset 175
Apply and Save Recipe 176
Run 176

AOI Setup 176
Measurement 177
Tolerance 178
Results 180

System 183
Alarms and Status 183
Status 183
Alarms 183

Message Viewer 184
Product Recipe 185
Master Recipe and Sub Recipe 185
Current Product Recipe 186
All Product Recipes 189
Orphan Sub-Recipes 191

Camera Simulator 191
SimpleMode 191
AdvancedMode 194
Run 195

Communication 195
Disk Cleanup 196
Logging Setup 197
System Logging 197
Alignment Result Logging 198

5

Table of Contents

Screenshot Saving 199
Settings 199
Auto Capture Records 200

Image Saving 201
Settings 201
Sub Directories 202
Image Files 203

Camera Status 204
Camera Center Parameters 205
Offset Compensation 207
XYThetaMode 207
Compensate Based onGaps 209
How to compensatemultiple features 211

Placement Limit Checker 212

ProgramWorkflow 215
TCP/IP Communication Devices 215
Commands From PLC 216
Results To PLC 217

Customized Communication Devices 217
CommandHandler 218
Task Scheduler 219
CommandHandlerCallback 219
Tasks 220
Task ExecutionMode 222
StepID 223

Command String 224
CommandArgs 225
Task Workflow 226
Hand-eye Calibration Task 226
Hand-eye Calibration Loop Task 230
Cross Calibration Task 231
Feature Finding Task 234
Alignment Task 239
Subtasks 243

General Tool Block 261
Alignment 261
Generic Features Finder 261
Line Features Finder 263
Lines To Lines Centering Block 264
Point Feature Finder 266
Points To Points Centering Block 269
Stage Pose Computer 270

Calibration 273
Cal Plate Feature Accumulator 273
Calibration Loop 276
Checker Grid Feature Extractor 280
Handeye Calibrator 284
Stage Validator 287

6

Table of Contents

UltraCalibration Loop 289
Image Corrector 291
Run Calib Checkerboard Corrector 291
Run Corrector 294
Train Calib Checkerboard Corrector 295
Train Corrector 301

Utilities 306
CogRecord Creator 306
Dictionary Composer 308
Publisher 309
Result Logger Block 310
Subscriber 311
Tags Composer 312

How To 315
How To ... Acquire 315
How to add 3rd party acquisition plugin 315

How To ... Control Devices 316
How to command stage tomove 316
Where to control light 320

How To ... Change UI 321
How to changemanual button properties 321
How to add custom graphics on image display 323
How to customize UI using Navigation Tree 327
How to localize 331

How To ... Change Log 334
How to get alignment result in AlignPlus program 334
How to add data in alignment log 335

How To ... Change Recipe 337
How tomodify recipe 337
How tomanage other recipes 340

How To ... Change workflow 341
How to change 4-Point Align to 1-Point Align 341
How to get stage's current pose for manual buttons 344
How to run two independent pose computers for two parts in one image 345

How To ... Customize Functions 349
CustomizeMeasurement Types 349
RunOne TimeCalibration Step by Step 352

Reference 357
Space Tree 357
Root Space and Pixel Space 357
User Spaces 359
Space Names 360
View Space Tree 361
Space Selection 362
Get Transform in Space Tree 369
Space Tree in AlignPlus 369

7

Table of Contents

AlignPlus Overview
AlignPlus 4.3 is specifically designed for making it easy to develop & deploy multi-station, multi-camera 2D vision guided
alignment applications. It provides a convenient graphical configuration that is flexible to handle a wide range of machine
designs. Based on the user configuration selections, a deployment ready vision application is self-generated. For further
application customization, user editable Cognex Designer project is also provided.

The automatically generated application consists of the following key elements:

n Vision Tasks

o Calibration, Train time and Run Time tasks

n Pose Computing Tasks

o Calculates the required motion to align or assemble part to the target pose

n Operator Interface

o Manual trigger buttons

o Setup & Run Time User Interfaces

n Common Alignment Functions

o L-Check, Offset Compensation, Manual Alignment, Motion System Analysis

n System Utilities

o Recipe management, User Management, Multi-Language, Data Logging, Image Saving

n Communication interface

o TCP/IP commands for interfacing with external controllers such as PLCs and Robot controllers

In addition to cutting down project development time, the added benefit of the auto-generated project is standardization
across different machine designs and projects. This makes it easier to hand-over & maintain projects between developers
and between field engineers.

8

AlignPlus Overview

For OEMs who prefer to develop their own project from scratch, but want to utilize powerful alignment functionality, AlignPlus
also provides calibration, feature finding and pose computing components that can be included in the OEM’s Cognex
Designer projects.

9

AlignPlus Overview

Release Info

About This Release
AlignPlus 4.3.1 mainly added a new localization function based on AlignPlus 4.3.0. This release works with VisionPro 9.6
SR2 and Cognex Designer 4.3.2

Supported Operating Systems
AlignPlus 4.3.1 supports development and deployment on single or multiprocessor machines using native languages
(English, Japanese, German, Korean, and Simplified Chinese) on a variety of Windows 64-bit operating systems.

l Windows 10 and Windows 10 IoT Enterprise

l Windows 7 Premium, Professional and Ultimate (Service Pack 1)

Supported Visual Studio Environments For Plugins Development
--

Designer 4.3.2 and AlignPlus 4.3.1 support development and deploying using the following compilers that target the .NET
Framework version 4.7.2:

l Microsoft Visual Studio 2015 (v. 14.0), Update 3

l Microsoft Visual Studio 2017 (v. 15.0)

Security Key Firmware
AlignPlus uses a USB security key attached to your computer to ensure the software is properly authorized for use. This
release supports firmware version 4.30 for AlignPlus security keys.

If you are using a security key with a previous version of firmware, contact Cognex Support for assistance in upgrading to the
latest version. Keep your security key firmware up to date to take advantage of the latest features and improvements to
Cognex software security.

Security License
Security License should include the following part:

1. VisionPro License

2. Cognex Designer License

3. AlignPlus License

The needed VisionPro and Designer licenses are included with the AlignPlus Products.

New Features
1. Localization function using CSV file inputs

2. Documentation for the following functions:

l Multi-Part Pickup

l Inspection

l One Time Calibration

l Using Camera Center as Golden Pose

l Independent Calibration Plate Configuration for different stations

10

Release Info

Improved Features
1. Chinese Localization for AlignPlus GUI

2. Improved AOI Inspection configuration HMI

3. Jogging functions for manual alignment

Fixed Issues
1. False alarm of camera disconnection

Release History
Software Environment Support:

AlignPlus VisionPro Cognex Designer
3.0 9.1 SR1/SR2 2.6

4.0 9.2 3.0

4.0.1 9.5 SR1 4.2

4.2.0 9.6 4.3.1

4.3.0 9.6 SR2 4.3.2

AlignPlus 4.0
New functionality added in AlignPlus 4.0 include:

l Camera Simulator

l Screenshot Saving

l Part-based Hand-eye Calibration

l Part-based Cross Calibration

l Manual Calibration

l Disk Cleanup

Known Issues
1. Operation in features finder sometimes froze A+ program that lead to task forceful close.

2. CDB image player sometimes cannot play saved CDB files.

Fixed Issues
1. Error messages are very difficult for operators to understand.

2. Cognex Designer crashes by opening PatMax "All setting".

3. In runtime user interface, no recipe saving reminder before closing the application if there is any change in recipes.

AlignPlus 4.0.1
New functionality added in AlignPlus® 4.0.1 include:

l Improved Operator Interface include HMI customization and tree view navigation

l User Interface to manual set a feature finder Origin

l Support for live mode

l Camera connection status indicators

11

Release Info

l Camera Position Adjustment in Home2D after Calibration to avoid re-calibration if camera shuttled for different work
size

l Improved image playback and image archiving

l Enhanced logging features

l Camera acquisition disable/enable function in feature finding task.

Known Issues
1. Program developed in older version cannot run in this version.

2. Configuration wizard rerun compatibility issue:

o Changes in tasks are overwritten

o Some page layouts disposition

o Calibration and alignment recipes cannot be loaded.

Fixed Issues
1. Feature finding tool block often causes processing time increase.

2. Memory increase when $LogData function is frequently called.

3. Recipe loading/unloading takes more than 1 minute during test mode which makes debugging in field too time-
consuming.

4. Custom feature finder hang and crash occasionally in test mode.

AlignPlus 4.2.0
New functionality added in AlignPlus® 4.2 include:

1. Enhanced Recipe Management

2. Master Image Display

3. Exporting and Importing Setup wizard Configuration.

4. Manual Control Buttons

5. Many side functions including:

o L-Check

o Enhanced Image Saving and Playback

o Motion Analysis

o Manual trigger buttons

o Offset Compensation

o Placement Limit Check

o Camera Simulator Advanced Mode

6. Localization

7. Hand-eye calibration result judgment and moving path graphic display

12

Release Info

Fixed Issues
1. Recipe corruption after IPC is cut off electricity while AlignPlus program was running.

2. Image Corrector's cycle time increases by 2-3 times after user reconfigures scripting in custom tool block feature
finder.

3. AlignPlus program developed under older version cannot run in new version.

4. Configuration wizard rerun compatibility issue:

o Changes in tasks are overwritten

o Some page layouts disposition

o Calibration and alignment recipes cannot be loaded.

5. Camera reconnection issue

TCP/IP Commands Changes
1. New commands added in this release

Command Key Application Description

LFA Alignment/Assembly Run feature fining task in asynchronous mode

GPA Alignment/Assembly Run pose computer task in asynchronous mode

LFGP Alignment Run feature fining task first, and then pose computer task synchronously

2. EncodedID definition is changed as below

l EncodedID in A+ 4.0.1

l EncodedID in this release

Execution Mode EncodedID

Acquire Only StepID + 1000

Acquire and Process StepID

Process Only StepID + 2000

AlignPlus 4.3.0
New functionality added in AlignPlus® 4.3.0 include:

1. Multi-Part Pickup

Supports single camera and single acquisition applications.

2. Inspection

Supports measurement and gauging applications

13

Release Info

3. One Time Calibration

4. Using Camera Center as Golden Pose

5. Independent Calibration Plate Configuration for different stations

6. Supports image acquisition from Basler USB 3.0 cameras, Hikvision GigE and USB 3.0 cameras

7. Documentation about AlignPlus Concept, user manual and communication protocol. (Complete documents for new
features above will be released in next A+ release)

Improved Features
1. Enhanced manual trigger button for auto calibration

2. Enhanced recipe management for safety check

3. Improved layout of navigation tree

4. Added more exception messages for user to identify acquisition issues

5. Improved L-Check usability

6. Improved Offset compensation usability

7. Mechanism to avoid rerunning a on-going deployed application

8. Added ACB, AC commands to exported command sequence

9. Added a warning when left-handed coordinate is detected after hand-eye calibration

Known Issues in This Release
1. Issues related to calibration when separate calibration plates are used

Cross calibration computation error.

Hand-eye calibration result could be unreliable.

2. Program regeneration with wizard configuration changes takes as long as 5-10 minutes.

3. Part based calibration accuracy could be lowered when using a sparse/single feature tracking with an inaccurate
motion device.

4. Feature finding task cannot run properly when feature finder component is configured to connect to more than one
calibration components in configuration wizard.

5. Switching to display page whose live mode is on takes long time and could lead to an application freeze.

Fixed Issues
1. LFGP Command execution error: alignment task is executed before feature finding task finishes execution

2. GP command is supposed to run synchronously but runs asynchronously

3. Camera enable/disable status for feature finding task sometimes is not updated during recipe change.

4. ACB command execution error when real part is used for a vision guided hand-eye calibration.

TCP/IP Commands Changes
New commands add in this release:

Command Key Application Description
MEA AOI Run inspection task synchronously after feature fining

MEAA AOI Run inspection task asynchronously after feature fining

LFMEA AOI Run feature fining task first, and then inspection task synchronously

14

Release Info

Command Key Application Description
MGP Multiple Parts Pickup Run multiple part alignment task synchronously after feature fining

MGPA Multiple Parts Pickup Run multiple part alignment task asynchronously after feature fining

LFMGP Multiple Parts Pickup Run feature fining task first, and then multiple part alignment task synchronously

Additional Documentation Online link
3rd Party Acquisition Development SDK

https://support.cognex.com/en/downloads/alignplus/3rd-party-camera-support

Installation
Install Steps
To install AlignPlus 4.3, please install the following programs following the displayed instructions.

1. Install VisionPro 9.6 SR2. Follow the instructions on the wizard screens.

2. Install Cognex Designer 4.3.2. Follow the instructions on the wizard screens.

3. Install AlignPlus 4.3.

For the most up-to-date installation file, please refer to the Cognex online support site:

VisionPro: https://support.cognex.com/en/downloads/visionpro

Cognex Designer: https://support.cognex.com/en/downloads/cognex-designer

AlignPlus: https://support.cognex.com/en/downloads/alignplus

External plugin installation
For external plugin installation, follow the guidance of Cognex Designer user manual:

In order for a plugin to be usable by a Designer application in development or test mode, it must meet the following
requirements:

All of the .DLL files that implement the plugin must be stored in a single plugin directory within
%ProgramData%\Cognex\Designer\Plugins\ on the PC upon which you are running Designer.

The directory that contains the plugin .DLL files must also contain a Plugin Configuration file that describes the
characteristics and compatibility information for the plugin.

Cognex recommends that you adopt the following convention for naming and arranging plugin directories within
%ProgramData%\Cognex\Designer\Plugins\:

%ProgramData%\Cognex\Designer\Plugins_company_name_\ _plugin_name__version_ \ _architecture_ \

where:

l _company_name_ is the name of the company that created the plugin.

l _plugin_name_ is the name of the plugin.

l _version_ is the version of the plugin

l _architecture_ is Any, x86, or x64

Using this naming scheme allows you to manage the concurrent installation of multiple versions of a given plugin.

Note: The use of this naming scheme is optional as long as the two requirements listed above are met. Whenever you
create a new project in Designer, Designer will search all directories within
%ProgramData%\Cognex\Designer\Plugins\. Any plugins within the directory, or any of its sub-directories, will be
added to the project's list of plugin references.

15

Release Info

https://support.cognex.com/en/downloads/visionpro
https://support.cognex.com/en/downloads/cognex-designer
https://support.cognex.com/en/downloads/alignplus

For more information about plugin, please refer to Cognex Designer User Manual/How To.../How To... Plugins/Working
with Plugins.

16

Release Info

Create an AlignPlus Project

Create an Empty Project
The first step to create an AlignPlus project is to create an empty AlignPlus project:

1. Type "Designer" in command window and select the suggested Cognex Designer application.

2. In the opened dialog, click "New Project" icon, an new dialog will pop up for you to confirm project name and its path.

3. In the pop-up dialog, input a project name and choose a path for it (the default path is "C:\Users\<UserName>\Cognex
Designer\Projects"). Keep the default project type as "Blank Project" and the default Plugins as default as "AlignPlus", click
"Accept" button to confirm. After this, Designer will run a process to create the empty project.

4. A empty AlignPlus project has no difference with other empty Designer projects except that it has AlignPlus plugins
added.

17

Create an AlignPlus Project

After the empty AlignPlus project is created, Configuration Wizard then can be used to generate the contents of the project
based on user's configuration.

What is Configuration Wizard
AlignPlus Configuration Wizard provides an interface for user to configure cameras, calibrations, feature finders, and pose
computers for an application, and then automatically generates the project in few minutes. Configuration Wizard supports
multiple cameras, multiple stations, stage/robot alignment, assembly, or inspection applications. It is very convenient and
flexible for user to generate projects based on machine descriptions.

An automatically generated project includes the following functions:

1. Vision tasks including calibration, train time and run time feature finding tasks

2. Pose computing tasks which compute the required motions to align or assemble parts to the target poses

3. User interface for user to setup the machine, test, run, and deploy

4. Common alignment functions such as L-Check, Offset Compensation, Manual Alignment, and Motion Analysis

5. System utilities such as recipe management, user management, multi-Language, data Logging, and Image saving
and play back

6. Communication interface for TCP/IP commands to interface with external controllers such as PLCs and Robot
controllers

Note: For basic knowledge about a designer program, please refer to Help\Cognex Designer User Guide\Developing
a Cognex Designer Project.

To open the Configuration Wizard, choose the "Setup" option under "AlignPlus" menu in the opened designer project.

An empty Configuration Wizard is as blew.

18

Create an AlignPlus Project

Configuration Wizard provides configurations for the following aspects of an AlignPlus program:

l Alignment System on page 19

l Devices on page 21

l Calibrations on page 22

l Finders on page 30

l Parts on page 32

l Alignments on page 33

l Settings on page 36

Alignment System
An alignment system is a system that communicates or controls related hardware (such as camera, lights, motion devices),
runs vision tasks, and computes results to guide motion devices to achieve alignment/assembly goals. One alignment
system manages five type of components: Devices, Calibrations, Feature Finders, Parts, and Alignments. Each type could
have multiple components depending on the application.

Devices are used to acquire images, communicate with motion devices and control lights. Calibrations calibrate images
acquired from the corresponding cameras; Feature finders locate features on calibrated images; Parts specify which part
rests on which station; Alignments compute target poses for motion devices based on found features. Each component takes
inputs from the components (except Devices) on the left side and produces outputs for components (except Alignments) on
the right side. During the wizard configuration, configure from left to right so that each component receives its proper inputs.

19

Create an AlignPlus Project

Add
By default, the Configuration Wizard generates only one alignment system named "AlignmentSytem". However, it allows
user to add more alignment systems. After the application is generated, each alignment system will run independently
without interfering with the others. To add one, click "Add" button at the lower left corner of set up wizard window.

To rename the added system, double-click it to enter edit mode and input the new name (only numbers and alphabetic
characters are allowed). Once it is done, hit "Enter" key to confirm.

Remove
To remove an alignment system, select it from the list and then click "Remove" button. Note that there should be at least one
alignment system remains.

20

Create an AlignPlus Project

Devices
Devices in Configuration Wizard are representatives of real hardware devices related to vision system in an application,
including motion devices, cameras, and light controllers. Their quantities should match with the numbers of corresponding
hardware devices in that application.

Motion Device
A stage and a platform are created by default for an alignment system. Stage is a motion device that can move part on it,
such as a XYT stage or a robot. Whereas platform is another type of motion device on which part cannot be moved, such as
a stationary table.

Add
If there are more stages or platforms in the system, you can click Add Motion Device to add them.

Set

All motion devices including the default stage and platform have one parameter within: Vision System Guided. Click " "
at the upper right corner of the component, or right click the component and select Expand/Collapse to open this parameter.

If the "Vision System Guided" is checked, the Configuration Wizard will generate a calibration loop that can be used to guide
motion device to move during hand-eye calibration. If it is unchecked, the calibration loop will not be created, motion device
and hand-eye calibration task need to interface step by step to finish the hand-eye calibration process.

Delete
Besides the two default devices (Stage0 and Platform0), the rest of the devices can be deleted if they are not used. To delete
one, select it and press "Delete" button on keyboard.

Camera
Add
Click Add Camera to add a camera device to the alignment system.

21

Create an AlignPlus Project

The first one has a default name of Camera0, the following ones will be Camera1, Camera2, and so on. To rename a
camera device, double-click it or select it and hit "F2" key to enter edit mode, then input the new name.

Note: The renaming method mentioned above applies to all other components in the alignment system.

Delete
Select the camera to be deleted, and press "Delete" button on keyboard.

Light Controller
Add
Click Add Light Controller to add a light controller to the alignment system.

The naming scheme for light controller device works the same as it does for cameras.

A light controller could have multiple channels, each channel controls one light. After the project is generated, the vision
system can control through light controller which channel to turn on/off, what intensities to use to achieve desired imaging

effect. To input the number of channels, click the " " icon to open the edit box and enter the number.

CAUTION: This is the only place to change the number of channels of a light controller. If this number should be
changed after the project is generated, one need to come back to the Configuration Wizard to change it, and rerun the
wizard.

Delete
Select the light controller to be deleted and hit "Delete" button on keyboard.

Calibrations
Calibration establishes shared coordinate among different cameras and motion devices. There are six types of calibrations:
stationary hand-eye calibration, moving hand-eye calibration, cross calibration, manual calibration, checkerboard
calibration, and hand-eye camera mount calibration, each serves a different purpose. To understand more about different
types of calibrations, please refer to Calibration Introduction and its following topics.

Add
Click Add Calibration to add a calibration component. The first component has a default name of Calibration0.

22

Create an AlignPlus Project

Connect
Before configuring its calibration type, the calibration component needs to connect to at least one camera device. Here are
steps to connect:

1. Select one camera device.

2. Click the output pin of the selected camera and drag a line from it to the calibration component on the right.

4. When you see the calibration component generates an input pin to receive the line, release mouse to finish connection.

Note: It is the same way to connect a calibration component to a feature finder, a feature finder component to a part, or
a part component to an alignment.

If a calibration requires two image acquisitions from the same camera at two different positions(such as camera shuttling
case), then user need to drag two lines from that camera device to the calibration component. The calibration component will
automatically generate two input pins with different position indexes.

To remove a link between two components, first select the line until it becomes bold, then press "Delete" button on keyboard.

23

Create an AlignPlus Project

Set

After connecting to camera device(s), user can start configuring parameters inside a calibration component. Click " " at
the upper right corner of the component, or right click it and select Expand/Collapse to open its inside parameters.

Type

Here are all options for a calibration type:

Option Description
None Upon this select, there will be no calibration task added to the auto-generated project. Images are merely

passed through this calibration component from cameras to connected feature finders; these finders will find
their features in pixel space.

Hand Eye
Stationary
Camera

Select this option to be able to perform stationary hand-eye calibration in which calibration target moves
together with a motion device under the FOVs of stationary cameras. The connected feature finders will find
features in Home2D.

Hand Eye
Moving
Camera

Select this option to perform moving hand-eye calibration of in which cameras moves together with a motion
device over a stationary calibration plate. The connected feature finders will find features in Home2D.

Cross
Camera

Select this option to be able to perform cross calibration. The connected feature finders will find features in
Home2D generated by the unified hand-eye calibration.

Pixel to
Physical
Units

Select this option to be able to perform checkerboard calibration. The connected feature finders will find
features in Plate2D.

Manual
Calibration

Select this option to be able to perform manual calibration. The connected feature finders will find features in
Home2D that is generated by manual calibration.

Hand-Eye
Camera
Mount

Select this option to be able to perform one time calibration for every connected cameras. These calibration
results will be used to avoid recalibration during model change when cameras need to be repositioned to fit
new model size.

24

Create an AlignPlus Project

Hand-eye Calibration
Hand-eye Camera Stationary and Hand-eye Moving Camera have similar parameters.

Stationary Camera Moving camera

Target

Option Description
Part Use part features to perform hand-eye calibration

Checkerboard Use calibration plate features to perform hand-eye calibration

Hybrid Use calibration plate to calibrate cameras intrinsic parameters and generates distortion-free images, and
then perform hand-eye calibration by tracking feature(s) on a calibration part.

Motion Device

All available motion devices in the wizard. Choose the one that will move the calibration target/cameras during the hand-eye
calibration.

Unified with

Enables a cross calibration to be unified with current hand-eye calibration.

Enable UltraCalibration

Select this check box to make the generated application be able to perform UltraCalibration.

Related Data

Table
Column

Description

Terminal
Index

The index of the input terminal. The upper most terminal has an index of 0.

Position
Index

To acquire images of regions of a part, many alignment systems use multiply cameras to acquire images from
multiple regions of a part. These cameras acquire images simultaneously when application uses the position
index . If position indexes are different, then cameras acquire images at different times.

Cross Calibration
It takes three steps to add a cross calibration component: connect it to cameras, , and unify it with hand-eye calibration block.

1. Connect to cameras

Create a new calibration component and rename it (for example, "CrossCalib"), and connect cameras to this
component according to its acquisition requirements.

25

Create an AlignPlus Project

2. Check position indexes

Check whether the position indexes are correctly configured. The first position index is 0, second is 1, and so on. For
cross calibration, there should at least two different position indexes.

26

Create an AlignPlus Project

3. Unify with a hand-eye calibration component

There are two ways to unify a cross calibration component with a hand-eye calibration component, either way will
work.

l In the opened hand-eye calibration component, select the name of the cross calibration component to be
unified in the Unified with drop list, and click Yes in pop-up dialog.

l In the opened cross calibration component, select the name of the hand-eye calibration component to be
unified in the Unified with drop list , and click Yes in pop-up dialog.

However, if there are more than one cross calibrations which needs to bind with the same hand-eye calibration, only
the second way can realize it.

Target

Option Description
Part Use part features to perform cross calibration

Checkerboard Use calibration plate features to perform cross calibration

Hybrid Use calibration plate to calibrate cameras intrinsic parameters and generates distortion-free images, and
then perform cross calibration using feature(s) of a part on corrected images

Unified with

Leave it as empty the corresponding hand-eye calibration component has already selected current cross calibration
component in its Unified with drop list. Otherwise, select the name of the hand-eye calibration component to unified with and
then click Yes in the pop-up dialog.

Related Data

27

Create an AlignPlus Project

Table
Column

Description

Terminal
Index

The index of the input terminal. The upper most terminal has an index of 0.

Position
Index

To acquire images of regions of a part, many alignment systems use multiply cameras to acquire images from
multiple regions of a part. These cameras acquire images simultaneously when application uses the position
index . If position indexes are different, then cameras acquire images at different times. There must be more than
one position index in cross calibration.

Checkerboard Calibration
Checkerboard calibration does not require any motion devices, nor needs to be unified with any other calibrations, it only
requires a calibration plate to be placed stationary in the FOVs of cameras before the calibration. It takes two simple steps to
configure a checkerboard calibration component: after connecting to the related cameras, select Pixel to Physical Units in
the type field.

Manual Calibration
Manual calibration also does not require any motion devices, nor any other calibrations. To add it, choose Manual
Calibration type after its connection to cameras.

Target

Option Description
Hybrid Use calibration plate to calibrate cameras intrinsic parameters and generates distortion-free images, and then

perform manual calibration using feature(s) of a part from corrected images

None User directly input parameters of transform from Raw2D to Home2D without the need of feature information

Unified with

Leave it as empty.

Related Data

28

Create an AlignPlus Project

Table
Column

Description

Terminal
Index

The index of the input terminal. The upper most terminal has an index of 0.

Position
Index

To acquire images of regions of a part, many alignment systems use multiply cameras to acquire images from
multiple regions of a part. These cameras acquire images simultaneously when application uses the position
index . If position indexes are different, then cameras acquire images at different times.

One Time Calibration
One time calibration performs a moving hand-eye calibration for each connected camera independently. It uses the gantry
where the camera is mounted to as the motion device to move the camera over a calibration plate to several specified
points, acquires a image at each point, runs the hand-eye calibration in the end to calculate the transform from gantry's
space to the Home2D that was established by stage's hand-eye calibration. To add an one time calibration, choose Hand-
Eye Camera Mount type after its connection to camera devices.

Target

One time calibration only uses calibration plate as the calibration target.

Unified with

Leave it as empty.

Related Data

Table Column Description
Terminal Index The index of the input terminal. The upper most terminal has an index of 0.

Position Index Always be 0.

Note:
One time calibration result is only used for camera offsets adjustment to avoid recalibration during model change, it can
not be used to correct images directly for feature finding. Therefore, the one time calibration component can not be
connected to any feature finder component in the Configuration Wizard.

Delete
If a calibration component is bounded with another calibration component (such as a cross calibration is unified with a hand-
eye calibration), you need unhook them first by choosing empty in their Unified with fields, and then delete the one you
would like to delete.

If a calibration component is connected to a finder, and the finder links to a part, the part links to an alignment, then you need
to delete alignment component first, then delete the part, and at last the calibration component can be deleted.

29

Create an AlignPlus Project

Finders
Finders are used to locate features (such as fiducial marks, corners, etc.) on calibrated images. One finder in the
configuration wizard has one feature finding task in the corresponding generated project. This task then can be used for
feature finding in both train time and run time.

Add
Click Add Finder to add one finder component.

Connect
A finder component needs to be connected to a calibration component before it can be configured inside. Once the
connection is made, a dialog will pop up saying the finder type will be changed to Point, click "Yes" to continue.

Set
In the opened dialog box of the finder component, users can configure the feature type and number of images per camera.

Type

30

Create an AlignPlus Project

Option Description
Custom When custom is chosen, the FeatureExtractorSubTask inside the corresponding feature finding task

generated by the Configuration Wizard will be empty, so that users can customize this sub task. One
advantage of selecting 'Custom' type is that when the configuration wizard is rerun, the user
customized contents in the FeatureExtractorSubTask will be maintained. For the other types,
AlignPlus will overwrite the sub task contents to default settings.

None Default option when finder is not connected to any calibration component.

Point Select this option to have the feature finding task and the corresponding configuration HMI to find
point features.

Line Select this option to have the feature finding task and the corresponding configuration HMI to find line
features.

Generic Feature Select this option to have the feature finding task and the corresponding configuration HMI to find
generic features.

Multiple Parts Select this option to have the feature finding task and the corresponding configuration HMI to locate
multiple parts using point features.

Note: Current multiple parts function only supports single camera single position pickup
applications. Therefore, multiple parts finder can only connect to one camera device through a
calibration component.

AOI Features Select this option to have the feature finding task and the corresponding configuration HMI to locate
AOI features (equal to generic features) for inspection applications. The auto-generated
corresponding feature finder will be a AOI (generic) features finder.

Tip: It is not recommended to make any changes to auto-generated contents in FeatureExtractorSubTask of a feature
finding task to avoid possible damage to it. However, if a user is confident enough to make modifications in it, and then
would like to keep these modifications when the wizard rerun is needed, it can be done in this way: 1) choose
point/line/generic feature type in finder component for the first time of project generation; 2) make modifications inside
the FeatureExtractorSubTask that are very necessary for the application; 3) change the feature type to 'Custom' in the
finder component and rerun the wizard.

Number of Images per Camera

Specifies the number of images that the corresponding feature finding task will capture from each camera at each
acquisition position. The default number is 1, increase it if the same camera needs to capture multiple images of the part
under different exposure and lighting settings.

Related Data

Table
Column

Description

Calibration
Name

Name of the calibration component whose output terminal is connected to the current finder component

Terminal
Index

Index of the corresponding input terminal of the calibration component.

Position
Index

Corresponding position index in the calibration component

31

Create an AlignPlus Project

Table
Column

Description

Will
Acquire

A check box that indicates if the image at the corresponding Calibration Name, Position Index, and Terminal
Index will be acquired during the feature finding process.
If an image are not required for feature finding, you need to uncheck this option.

Delete
If the finder component is connected to a part, and the part links to an alignment, then you need to first delete alignment
component, then the part, and by then the finder component can be deleted.

Parts
Part is used to specify which part rests on which stage or platform. Part component has no corresponding task, nor needs
any further configuration in the generated project. It only provides necessary for pose computation in alignment task.

Add
Click Add Part to add a part component.

Connect
Connect it with one finder component on the left side.

Set
Open the dialog box, and select the device where the part (whose features are found by the connected finder) rests on
according to real situation.

32

Create an AlignPlus Project

Delete
If the part component is connected to an alignment component, delete the alignment first, then delete the part.

Alignments
Alignment component allows users to configure the techniques for alignment, assembly, or inspection computation. One
alignment in Configuration Wizard has one alignment task in the corresponding auto-generated project.

Add
Click Add Alignment to add an alignment component in the wizard workspace.

To change the name of it, double-click Alignment0 to edit it.

Connect
Alignment needs to be connected to at least one part component before it can be configured. For alignment applications, this
component only needs to connect to one part. For assembly applications, it should connect to the two parts that will be
assembled together afterward. For inspection applications, this component can connect to one or two parts as long as these
parts' AOI features share the same coordinate space and with different feature names.

When the component connects to the first part, by default the wizard will set its type as "Center Using Golden Pose"; click
"Yes" in the pop-up dialog to continue.

However, if the type of the finder connected to the part on the left is Multiple Parts or AOI, then the type of alignment
component that connects the same part on the right side will be set as "Multiple Parts" or "AOI" respectively.

When the alignment component connects to the second part, the wizard will change its type to "Custom" for assembly
applications; click "Yes" in the pop-up dialog to continue, you can change the type afterward. If it is inspection applications,
then the alignment component type will stay as "AOI".

33

Create an AlignPlus Project

There could be cases when you try to connect the second part to an alignment component, but the component does not
accept:

There are two causes of this phenomena:

1. The two parts are configured as on the same station for an assembly application

In assembly applications, the two parts to be assembled should be on different stations. To solve it, check and
reconfigure the motion devices in both parts, make sure the two devices are different, then reconnect them to the
alignment component.

2. The feature finder type is not compatible with alignment type

The AOI alignment component can only accept parts connected to AOI finders, change the corresponding finder
types to "AOI features" to continue the connection.

Set
Open the alignment dialog box, configure the following parameters according to the real application.

Type

Option Description
Custom Select this option to create an empty PoseComputer subtask inside the corresponding alignment task in the

generated project. Users can customize this subtask, and when the Configuration Wizard reruns, the user
customized contents in this PoseComputer subtask will be maintained.

None Select this option when an alignment component has no input connections.

34

Create an AlignPlus Project

Option Description
Center
Using
Golden
Pose

This option can be used either for one part alignment application or two parts assembly application in which
each part aligns to its target pose defined during train time.
For more information, please refer to Alignment Procedure and Using Golden Pose.

Center
Using
Paired
Features

Select this option to align parts using one part's features as the target features pose for another part.
For more information, please refer to Using Paired Features.

Multiple
Parts

Select this option to align multiple parts to one common target pose.

AOI Select this option to run inspection (such as measurement, gauging) based on extracted AOI features. AOI
function allows users to get features from different feature finders that share the same coordinate space,
however, the feature names should be manually modified as unique among all feature finders.

Tip: It is not recommended to make any changes to the auto-generated contents inside a PoseComputerSubTask of an
alignment task to avoid possible damage to it. However, if a user is confident enough to make modifications in it, and
would like to keep these modifications when the wizard rerun is needed, it can be done in this way: 1) choose other
types (such as Center Using Golden Pose) in alignment component for the first time of project generation to let the
wizard generate the needed pose computer contents; 2) make modifications inside the PoseComputerSubTask that are
very necessary for the application; 3) change the alignment type to 'Custom' in the alignment component and rerun the
wizard.

Technique

Option Description
Custom Select this option to keep the PoseComputer subtask empty. Users can customize this subtask, and when

the Configuration Wizard reruns, the customized content in PoseComputer subtask will be maintained.

Align To
Gripper

Select this option when a part placed on a stationary platform needs to be picked up by a gripper. The
gripper will first adjust its own position based on the vision system's feedback, then pick the part up at a
fixed relative pose to the part. For more information, please refer to Align to Gripper on page 1.

Align To
Base

Select this option when a part is attached to a motion device (such as a stage) to be aligned. After alignment
pose computation, the part is moved by the motion device to the part's trained golden pose. For more
information, please refer to Align to Base on page 1.

Assembly
Blind
Transfer

Select this option when the two parts are handled in this way: the first part is placed on and moved by a
motion device at the feedback of the vision system to the expected relative pose of the second part; one part
is blindly transferred to the other part's side, and the two parts are assembled. For more information, please
refer to Assembly Blind Transfer on page 1.

Assembly
Guided Pick

Select this option when the two parts are handled in this way: the picking device such as robot or gripper
adjusts its own position first before picking up the first part based on the vision system's guidance; the
picking device picks the first part up and moves it over to the second part where the two parts are assemble
together. For more information, please refer to Assembly Guided Pick on page 1.

Assembly
Guided Place

Select this option when the two parts are handled in this way: the picking device such as robot or gripper
blindly picks up the first part and then adjusts its pose together with the part to fit the first part to the second
part's pose based on the vision system's guidance; the picking device moves the first part over to the
second part's side, and the two parts are assembled together. For more information, please refer to
Assembly Guided Place on page 1.

Split Axis Select this option when three elements of moving freedom(X/Y/Theta) are split to 2 or 3 different stages in
machine.

Measurement Select this option to run measurement in alignment task.

Pick Part Name

The name of the part whose pose will be adjusted by a motion device during alignment/assembly process. It is automatically
selected by the wizard based on user's configuration.

Use Custom Tool Block

35

Create an AlignPlus Project

Select this check box to have the run-time application present a VisionPro tool block edit control that you can use to
implement the alignment/assembly pose computation.

Delete
Select the alignment component, and hit "Delete" button on the keyboard.

Settings
After all components are well configured, click Next in the lower right of the Configuration Wizard to continue.

Then a setting page will show up:

Element Description
Machine
Name

Displays the machine name that the header of the run-time application displays.

Create TCPIP
Connection

If it is checked, Configuration Wizard will automatically create two TCP/IP server devices
(CommandsFromPLC and ResultsToPLC) as well as their callback scripts during the project generation.
Otherwise, these two devices and their callbacks will not be created.

Port Number
(Commands
from PLC)

The port number of CommandsFromPLC TCP/IP server device.

Port Number
(Results to
PLC)

The port number of ResultsToPLC TCP/IP server device.

Page Width Enter the width of the deployed application.
If you stretch the width of the deployed application and rescale it, the controls on the application will be
stretched by the same scale factor.

Page Height Enter the height of the deployed application.
If you stretch height of the deployed application and rescale it, the controls on the application will be
stretched by the same scale factor.

36

Create an AlignPlus Project

Element Description
Operator
Interface

Operator interface update settings can help fix interface issues after a upgrade

l Minimal: this option will add missing pages or buttons only. If page width or page height have
changed, the operator interface layout may break.

l Adjust Size: this mode will resize and reposition all wizard-created pages and controls, and add
back any missing controls. User-created controls are not affected.

l Adjust All Properties: this option will resize, reposition and reset properties like color or style of
wizard-created controls and pages. User-created controls are not affected.

l Reset Pages: this option will remove all operator interface customizations from wizard-created
pages. User-created pages are unaffected. Note that this option resets all scripts attached to buttons
and controls as well

Scripts Script Update Settings determine how AlignPlus updates scripts when the wizard runs.

l Minimal: (Not recommended) this option performs no script changes other than adding any essential
scripts that are missing.

l Update: this option makes an attempt to update scripts in the project to the latest version without
discarding user changes.

l Reset: this option will remove all user changes to scripts and reset all scripts to their fresh state. Use
this option if your project is having a lot of scripting errors.

Navigation
Tree

Navigation Tree Update Settings determine how AlignPlus updates the Navigation Tree

l Update: this option will preserves all edits to the navigation tree except those made invalid by
configuration changes.

l Reset: this option will remove all user changes to the navigation tree and restore it to its default
state.

Note: If it is the first time of the project generation, keep the default settings for Operator Interface, Scripts and
Navigation Tree; if it is wizard rerun, pick carefully what you want wizard to do for the already generated UI, scripts, and
navigation tree.

Click Finish to let the wizard generate the project after all settings are done, click Previous to go back to Configuration
Wizard workspace if you would like to modify anything on it, or click Cancel if you do not want to generate a program.

CAUTION: If Cancel button is clicked, all settings you have done including the components configurations and the
settings on current page will be cleared out. To save current configurations and settings, run the wizard first, and then
you can export the configurations into a .json file which can be imported and reused later. See more on Export and
Import Wizard Configuration on page 49

Things to Consider before Configuration
To configure a Wizard Configuration correctly, one needs to fully understand the application about devices used, stations,
parts, feature types, alignment methods, etec.

Devices
These are questions to be answered before configuring the Devices in Configuration Wizard.

About motion devices:

37

Create an AlignPlus Project

1. How many stations are there in this application?

2. Whether the station is movable or stationary?

3. Whether calibration loop task is needed for hand-eye calibration?

About cameras:

1. How many cameras used for each station?

About light controllers:

1. How many light controllers used for each station?

2. How many channels each light controller has?

Calibration
The first thing to consider about calibration is whether a calibration plate (such as calibration mylar sheet) can be used as
calibration target in the machine. For cross calibration which requires calibration target to be transferred from one station to
another, is the mechanical device capable of transferring either a calibration plate or a real part? If calibration plate can be
transferred, choose it as the first option. If not, then use real part as calibration target. If both are not, then use manual
calibration instead.

Calibrations for movable station
For movable station, use hand-eye calibration type.

Here are aspects to consider for hand-eye calibration.

1. Will cameras move or stay stationary during hand-eye calibration?(moving hand-eye or stationary hand-eye)

2. Can calibration plate be moved by the motion device during hand-eye calibration? (Choose real part if not)

Here is an example of a hand-eye calibration configuration for two stationary cameras, using checkerboard as target.

In the movable station, cameras may need to be shuttled to a different position to acquire images of other regions of the run
time part. In this case, a cross calibration is needed. Here is an example of adding a cross calibration for the same movable
station.

38

Create an AlignPlus Project

Calibrations for platform
For stationary platform, check first whether it would be used for assembly or inspection application.

Assembly application
To establish a shared coordinated between the movable station and the platform, a cross calibration is needed between the
two stations.

In the application example below, a calibration plate is first placed on Stage0, and two images of it are acquired by
Camera0 and Camera1. After that, then calibration plate is transferred by mechanical device from Stage0 to Platform0,
where other two images are acquired by Camera2 and Camera3.

So the cross calibration component should connect to four cameras: the first two acquire at one time, and the second two
acquire at another time. However, cross calibration component cannot know whether those images should be captured at
the same time or not. By default it sets all their position index as 0. Therefore, user needs to manual change the position
indexes of Camera2 and Camera3 from 0 to 1. Following that, unifies the cross calibration component with the hand-eye
calibration component.

39

Create an AlignPlus Project

If current platform has camera shuttling within it, then the cross calibration should cover three acquisition positions: one is
the position when calibration target is at the movable station, two are when calibration target is at the platform station.

In the application example below, calibration target is first placed under FOVs of Camera0 and Camera1 so the two
cameras can acquire images at position 0, then moved by mechanical transfer from Stage0 to Platform0 so that Camera2
and Camera3 can capture images of it first at position 1, second at position 2. For more information about cross calibration,
please refer to Applications of Cross-Calibration on page 1.

Therefore, the cross calibration component needs 6 images from three different positions, link the cameras as blow and
change the position indexes of the last four input terminals, and then unify it with the hand-eye calibration component.

Inspection application
Inspection applications does not require interacting with motion device, therefore, checkerboard calibration will be enough. If
camera shuttling is involved, then it can be configured as below:

However, if that platform already has a checkerboard-based cross calibration component, then the following inspection
finder can reuse the component without creating additional checkerboard calibration.

40

Create an AlignPlus Project

Feature Finding
The following questions should be considered before configuring a finder component:

1. What the feature type of current part?

Point, Line, Generic Feature, Multiple Parts, AOI, or Custom type.

2. How many images should be taken by each camera at each position for feature finding?

In most cases, Number of Images per Camera is set as 1. However, when multiple images should be taken from the
same camera at one position, this parameter should be changed accordingly.

3. Whether image acquisitions needed in the connected calibration are all required for the finder?

By default, a finder inherits all the acquisition settings from its connected calibration component. However, users can
choose whether images from given input terminals should be acquired for the finder.

In the example below, image acquisitions from Camera0 and Camera1 are only required for cross calibration to
establish the shared coordinate between stage and platform. However, once the coordinate is established, the finder
does not need to acquire image from Camera0 nor Camera1 anymore, but only images from cameras within the
platform. Therefore, the user needs to manually uncheck the "Will acquire" check box for the first two input terminals
in the finder component.

Part
Check which part rests on which station.

Alignment
Here is a decision tree for your reference about how to check an application type:

If it is an one-part application, then it is either Align to Base or Align to Gripper depending on whether the station is movable
or not.

If it is a two-part application, there are four cases:

l Align to Base if both are placed on movable stages, the application is an two-part alignment application in which
each part has its own alignment component and align to its own golden pose in run time.

l Assembly Blind Transfer if only one part is placed on movable stage.

l Assembly Guided Pick if both are placed on stationary platform, and motion device will adjust its position before
picking up one part.

l Assembly Guided Place if both are placed on stationary platform, and motion device will adjust its position after
blindly picking up one part.

41

Create an AlignPlus Project

Setup Examples

Application I_Align to Base
In this application, one camera is looking at a part which is affixed onto a stage, the goal of this application is to bring part to
its golden pose in run time.

Category Item Parameter
Part Quantity 1

Camera Camera Quantity 1

Camera Shuttling /

Hand-eye Calibration Calibration Type Stationary Camera

Calibration Target Checkerboard

Vision Guided or Motion Guided Vision Guided

Feature Finding Feature Type 1 Point

Alignment Align Technique Align To Base

Align Type Center Using Golden Pose

The configuration of this application is as follow:

42

Create an AlignPlus Project

Application II_Align To Gripper
In this application, two cameras are looking at a part which is affixed onto a stationary platform, after the vision system
detects the part's pose, a robot will adjust its position based on the vision system's feedback and then pick the part up.

Category Item Parameter
Part Quantity 1

Camera Camera Quantity 2

Camera Shuttling /

Hand-eye Calibration Calibration Type Stationary Camera

Calibration Target Checkerboard

Vision Guided or Motion Guided Motion Guided

Feature Finding Feature Type 2 Point

Alignment Align Technique Align To Gripper

Align Type Center Using Golden Pose

The configuration of this application is as follow:

Application III_Two Stages Alignment
In this application, two parts are affixed onto two stages, two cameras fore each stage. The first part is aligned to its golden
pose using 4-point features which requires camera shuttling, the second part is aligned to its golden pose using 2-point
features. After both are aligned respectively, the two parts are assembled together.

Category Item Stage1 Parameter Stage2 Parameter
Part Quantity 1 1

Camera Camera Quantity 2 2

Camera Shuttling Pos0, Pos1 /

Hand-eye Calibration Calibration Type Stationary Camera Stationary Camera

Calibration Target Checkerboard Part

Vision Guided or Motion Guided Vision Guided Vision Guided

Cross Calibration Type Camera Shuttling /

Calibration Target Checkerboard /

Feature Finding Feature Type 4 Point 2 Point

Alignment Align Technique Align To Base Align To Base

Align Type Center Using Golden Pose Center Using Golden Pose

The configuration of this application is as follow:

43

Create an AlignPlus Project

Application IV_Assembly Blind Transfer
In this application, one part is place on a stage, the other is placed on a stationary platform. The stage has only one camera,
so does the platform. The first part aligns its pose based on the second part's run time pose using paired features, and then
blindly transferred to the second part's side where they will be assembled.

Category Item Stage1 Parameter Stage2 Parameter
Part Quantity 1 1

Camera Camera Quantity 1 1

Camera Shuttling / /

Hand-eye Calibration Calibration Type Stationary Camera /

Calibration Target Checkerboard /

Vision Guided or Motion Guided Vision Guided /

Cross Calibration Type / Cross Station Calibration

Calibration Target / Checkerboard

Feature Finding Feature Type 1 Point 1 Point

Alignment Align Technique Assembly Blind Transfer

Align Type Center Using Paired Features

The configuration of this application is as follow:

44

Create an AlignPlus Project

Application V_Assembly Guided Pick
In this application, both parts are placed on stationary platforms, the first part at the picking station, the second part is at the
placing station. In calibration time, robot run moving hand-eye calibration over the picking station, and then runs a cross
calibration to bridge two stations. In run time, the vision system calculates the target pose for robot to pick up the part at
correct position. Then the part is moved to the placing station where the two parts will be assembled together.

Category Item Stage1 Parameter Stage2 Parameter
Part Quantity 1 1

Camera Camera Quantity 2 2

Camera Shuttling / /

Hand-eye Calibration Calibration Type Moving Camera /

Calibration Target Checkerboard /

Vision Guided or Motion Guided Vision Guided /

Cross Calibration Type / Cross Station Calibration

Calibration Target / Checkerboard

Feature Finding Feature Type 2 Point 2 Point

Alignment Align Technique Assembly Guided Pick

Align Type Center Using Paired Features

The configuration of this application is as follow:

45

Create an AlignPlus Project

Application VI_Assembly Guided Place
In this application, both parts are placed on stationary platforms, the first part is the picking station, second part is at the
placing station. During calibration, robot runs a moving hand-eye calibration over the picking station, and then runs a cross
calibration to bridge two stations. In run time, the vision system calculates the target pose of robot for it to adjust its position
after blindly picking up the first part. The part is then moved to the second part's side where the two parts will be assembled.

Category Item Stage1 Parameter Stage2 Parameter
Part Quantity 1 1

Camera Camera Quantity 1 1

Camera Shuttling Pos0, Pos1 Pos0, Pos1

Hand-eye Calibration Calibration Type Moving Camera /

Calibration Target Checkerboard /

Vision Guided or Motion Guided Vision Guided /

Cross Calibration Type Camera Shuttling Mixed Cross Calibration

Calibration Target Checkerboard Checkerboard

Feature Finding Feature Type 2 Point 2 Point

Alignment Align Technique Assembly Guided Place

Align Type Center Using Golden Pose

The configuration of this application is as follow:

46

Create an AlignPlus Project

Application VII_Single Part Inspection
In this application, a run time part is placed on a platform for inspection. Two cameras are used to first take images of two
corners of the part at one side, then shuttled to the other side, and take two images per camera of the other two corners
under different lighting. With the 6 corner images of the part, features are extracted and then processed for inspection
purpose. The configuration table is as below.

Category Item Stage1 Parameter
Part Quantity 1

Camera Camera Quantity 2

Camera Shuttling Pos0, Pos1

Image Quantity 1 image per camera at Pos0
2 images per camera at Pos1

Checkerboard Calibration Type Camera Shuttling

Calibration Target Checkerboard

Feature Finding Feature Type AOI Features

Inspection Measurement User defined

Here is the settings in the Configuration Wizard.

47

Create an AlignPlus Project

Application VIII_Two Parts Inspection
In this application, one part is placed on a stage, the other is on a platform. One camera for each part. The first camera runs a
hand-eye calibration, the second one runs a cross calibration, both using checkerboard as calibration plate. In run time,
features are extracted using AOI Features type (equal to Generic Features), and then distances between paired features are
measured or gauged for inspection purpose. The configuration table is as below.

Category Item Stage1 Parameter Platform Parameter
Part Quantity 1 1

Camera Camera Quantity 1 1

Camera Shuttling / /

Hand-eye Calibration Calibration Type Stationary Camera /

Calibration Target Checkerboard /

Vision Guided or Motion Guided Motion Guided /

Cross Calibration Type Camera Shuttling Cross stations

Calibration Target Checkerboard Checkerboard

Feature Finding Feature Type AOI Features AOI Features

Inspection Measurement User defined

Here is the settings in the Configuration Wizard.

48

Create an AlignPlus Project

Export and Import Wizard Configuration
After an application is generated, its configuration remains in the Configuration Wizard for users to review, modify, or rerun.
For users who would like to generate a new project based on a previous project's configurations, Machine Description
export function can help on this.

Export wizard configuration
Click "AlignPlus" menu and select "Export Machine Description" option, there would be a pop-up dialog asking you to
provide a location for an .json file in which the wizard configuration will be saved.

Import wizard configuration
Create a new empty AlignPlus project first, then click its "AlignPlus" menu and select the "Import Machine Description"
option. There will be a pop-up dialog looking for the .json file that you would like to import. Navigate and select the
previously exported .json file and click "OK" , then the configuration file will be imported.

Click "Setup" option under "AlignPlus" menu to check the imported wizard configuration and modify it to meet the new
project's requirements. After the modification, run the wizard, then the new project will be generated.

49

Create an AlignPlus Project

Home Page
Main user interface is the default interface when AlignPlus program starts. It's consisted of five areas: title bar, work mode,
mode view, main window and log view.

Title Bar
Title bar monitors hardware and system status, switches online/offline status, enables language and user change, provides
functions such as image play back, etc. For more information, please refer to Title Bar on page 53

Work Mode
AlignPlus program is always in one of the of three modes: auto mode, manual mode and setup mode. Work mode provides
three buttons to switch.

Auto
mode

Under auto mode, program runs vision tasks automatically in response to commands received from
external devices.

Manual
mode

In manual mode, user can manually trigger program to run vision tasks such as calibration, feature
finding or pose computing. Manual mode only works in offline status. When this mode is chosen,
program will pop up a dialog to confirm whether you want to switch to offline.

Setup
Mode

Setup mode is used to set up cameras, lights, calibration parameters, vision tasks and side functions
(such as image saving).

To setup a newly generated program, you should first go to setup mode to setup cameras, lights, calibration and feature
finding parameters, second go to manual mode to trigger the program to finish calibration, feature finder training, then come
back to setup mode to save product recipe, and at last go to auto mode to make program ready to run automatically.

Mode View
Mode view will change according to different work mode. When it's auto mode, mode view will monitor each stations' OK/NG
status, and the X, Y, Theta values that vision feeds back to motion devices. When it's manual mode, mode view will show
many command buttons that allows user to trigger the program to run calibration, feature finding or pose computing. When

50

Home Page

it's setup mode, mode view will show a navigation tree that user can quickly navigate each page and setup the program from
up to down.

Auto Mode Manual Mode Setup Mode

Main Window
Main window displays different contents under different mode.

1. In auto mode, it displays the alignment master display which shows all stations' feature finding result images in one
window.

l Alignment Master Display

2. In manual mode, it shows either alignment master display or calibration master display depending on whether user is
choosing calibration or alignment button group on work mode. Like alignment master display, calibration master display
shows all stations' calibration images in one window.

l Calibration Master Display

51

Home Page

l Alignment Master Display

3. In setup mode, main window shows each calibration or feature finding image display separately on different pages, so
that user can monitor each station's images in big window.

l single feature finder display

It also shows corresponding pages if you're setting up other parameters.

l calibration parameter display

52

Home Page

Log View
Log view lies at the button of main user interface. It displays latest system log which tracks operational changes, records
input commands and output results in the format of string.

You can click Expand button to expand log view to main window so that more information would be displayed, and click
Collapse to withdraw it back to original area. It is suggested to collapse it before switching to other pages so that the latest
log messages will not be blocked.

The system log displayed here is the same as Message Viewer on page 184 and would be saved into .csv file as configured
in Logging Setup on page 197.

Title Bar
Title bar shows the program's online/offline status, current time and selected recipe, monitors hardware and system status,
and provides some frequently used functions such as image play back, user change, language change, etc.

53

Home Page

Auto On
Auto on/off button shows whether program is online or offline. If it is online, the button will be green, otherwise red. Click the
button can switch between online and offline status.

l Online

Online status is used for production. When it's online, the program will be on standby waiting for commands from
external devices. Every time when commands are received, the program will process vision tasks and feedback the
results automatically if the requested tasks are not busy.

The program will automatically change to online mode when " " is chosen in work mode panel.

l Offline

Offline status is used for machine setup and program testing. When it's offline, user can set up cameras, run
calibrations, test feature finders or verify other functions.

The program will automatically change to offline status when " " or " " is chosen in work mode panel.

Status Monitor
Current Date/Time
A clock shows current system date and time.

Current Recipe
Shows current product recipe name. A product recipe contains acquisition information, calibration data and alignment data.
The first created recipe name is "Default Product Recipe", you can add your own recipes with more meaningful names. For
more information about recipe, please refer to Product Recipe on page 185.

System Status Monitor
System status monitor shows status of the computer on which AlignPlus program is running including CPU utilization,
memory usage and disc capacity. When they are under safe values, the status bars will be green, otherwise will be orange
or red depending on degrees above/below safe values.

PLC Status
Shows whether the PLC (Programmable logic controller) which controls the machine is connected to AlignPlus program.
Green shows it is well connected and ready to communicate. Gray indicates it is not connected, in this case you need to first
check hardware connection, then go to Communication on page 195 to check whether PLC's IP address and port number
are configured correctly or not.

Camera Status
Camera status monitors whether all physical cameras are connected to AlignPlus program. Each camera icon stands for one
camera device set in the configuration wizard. When mouse-hovering over an icon, there will be a tip showing its camera
name, and the camera's IP address or serial number if it's connected.

54

Home Page

When the icon is green, it means that camera is connected, otherwise disconnected. After the camera is reconnected, the
program will automatically put it online and turn the corresponding camera icon into green.

Alarm Acknowledge
When an alarm event is raised, the title bar will flash between red and gray to remind user to check on alarm. After the alarm

is checked, one can click " " icon to clear the alarm so that title bar will stop flashing. For more information about alarm,
please refer to Alarms and Status on page 183.

Image Play Back
Image playback function reruns saved raw images as if they were triggered though commands. To play back images, you
need to first save some raw images using Image Saving on page 201 function.

Image play back is only available in manual and setup mode. Click " " to open the play back dialog and follow the steps
below:

55

Home Page

1. Choose the directory where the raw images are saved.

2. Use filter to specify the alignment system, the station, the part disposition (OK/NG/Both), and time based filters. Once
filters are applied, all qualified images will be list out in the table below. Click ResetFilter if you want to revert to
default filters.

3. Select the images you want to play back, using Ctrl + or Shift + if there are more than one items to select or Ctrl + A to
choose all. The Selected Range will display the indexes of selected images.

4. Click Play Selected, then the image play back will run through all those images from top to down, output each result
and display every graphics at the same time.

5. Increase Pause time if you want to monitor each result and its images and graphics in a slower speed.

Help
Displays all available help files.

Language Change

Click " " icon to choose the language you want.

AlignPlus supports three languages: English, Chinese and Korean.

56

Home Page

User Change

Click " " icon, and choose user from the three options: Administrator, Engineer or Operator. The default is
Operator.

Administrator has full access to all the functions in program. Engineer shares the same access of administrator except
setting up feature finders. Operator can monitor program on auto mode, play back images and monitor displays, alarms, and
logs in setup mode.

Exit

Click " " icon to exit current program. The program will double confirm whether you want to exit. If there is any unsaved
recipe, the program will pop up another dialog prompting recipe saving choices. Click "Save" if you want to save, or "Exit
Without Saving" if you want to discard the changes.

57

Home Page

Auto Mode
Click " " button to enter auto mode.

In auto mode, the mode view will display result status of alignment stations and their output x, y, theta values.

Here is an example project and its auto generated result status on mode view. In this project, there are two pose computers:
Alignment0 and Alignment1. Alignment0 uses feature finder Features0's results, and Alignment1 uses Features1' results.
Features0 needs to acquire images at both position0 and position1, while Features1 needs only to acquire at position0.

Correspondingly, on mode view, For Alignment0, the first light represents whether feature finding of Features0 at position0 is
successful or not, the second light shows feature finding at position1 is successful or not, and the third one shows whether
the alignment result is within align limit or not.

For Alignment1, the first light indicates whether all features in Features1 at position0 are found successfully, and second one
displays whether alignment result of Alignment1 is within align limit or not.

To understand more about how to configure align limit, please refer to Placement Limit Checker on page 212.

58

Home Page

The AlignmentResult part shows each alignment station's X, Y, Theta results. These values will be sent to motion device
right after it has been calculated out. Note that Theta here is in degree.

Manual Mode
Click " " button to change to manual mode.

In manual mode, you can send commands to run calibration, feature finding or pose computing by clicking the
corresponding buttons which are convenient to set up or test the program.

Manual mode control panel has three parts: SN input, display setting, and command buttons.

SN Input
Input the current serial number of the part.

59

Home Page

Set Display
Disables or enables scroll bar, top bar or status bar of all image displays.

When there are more than two stations in one alignment system, the alignment master display will look very crowded with all
those scroll bars, top bars and status bars on. In this case, we can disable these bars to make more spaces for images.

Before disable:

After disable:

60

Home Page

Command Buttons
Button Categories
Command button panel provides the necessary buttons to trigger vision tasks including calibrations, feature finders, and
pose computers. These buttons are first categorized in terms of alignment stations, then under each station, they are divided
into two groups: calibration and alignment. Once calibration group is selected, only calibration buttons under current station
will be shown. Or if alignment group is selected, only feature finding train time and run time buttons as well as alignment
button will be shown.

Command buttons are all automatically generated based on the configuration wizard. Here is an example of a configuration
and its all corresponding command buttons:

In this example, there are two alignment stations: Alignment0 and Alignment1. In Alignment0, the calibration group includes
both HECalib0 and CrossCalib buttons, alignment group includes Features0's train time, run time buttons and alignment0
button. In Alignmen1, the calibration group only has one HECalib1 button since there is no other calibration in Alignment1
station, the alignment group has Feature1's train time, run time buttons and alignment1 button.

If it is assembly application, there will be only alignment, then all calibration buttons will be put together under calibration
group, and all feature finding buttons and one alignment button will be put together under alignment group. Here is another
example of it:

61

Home Page

During test mode of this assembly program, button Alignment0 should be only triggered after both Features0 and Features1
have finished running.

One Time Calibration Buttons
OneTimeCalib buttons are used to trigger One Time Calibration on page 1 for every cameras. It is often used for one time
calibration simulation when all images have already been acquired and placed into specified camera simulation folders. It
also can be used to trigger one time calibration that acquires images from real camera and gets stage positions from stage.
However, this way requires users to customize stage pose reading at each calibration point by implementing the manual
controller's "GetStagePosition" callback function. For more information about how to customizing GetStagePosition callback
function, please refer to How to get stage's current pose for manual buttons on page 344.

Similar with other hand-eye loop manual button, one time calibration loop button initiates and controls a hand-eye
calibration loop until the loop is finished. Once the loop button is clicked, the manual controller will start a thread and send
an "ACB" command to trigger a moving hand-eye calibration loop for that camera, and monitor the program's "ACB" result
string. With received "ACB" result string, the button thread will send the next "AC" command to the program so that it triggers
the first calibration point's image acquisition, after the first "AC" result string is received, it sends the second "AC" command,
and so on; until all calibration points are covered. In the end, the thread runs the one time calibration calculation.

62

Home Page

Button Commands
Each button has one command attached, when the button is the clicked, the command will be sent to CommandHandler
which later will call corresponding tasks. The command follows the same structure as defined in Command String Structure
which has CommandKey, EncodedID and certain parameters such as current stage's x, y, theta.

During program test, to get current stage's x, y, theta before the command is sent out, command button panel will call
GetStagePosition call back function first to get x, y, theta, then compile it into the command string and send it out to
CommandHandler. For more information about command button panel call back function, please refer to How to get stage's
current pose for manual buttons on page 344.

IfGetStagePosition is not implemented, then the panel will use default value (0,0,0) for x, y, theta input. This works when x,
y, theta does not matter for specific testing, such as: to test whether vision tools find features correctly or not.

Once a command is sent out, the system log will record the command string.

Or you can also use command button panel's CommandSentCallBack call back function to get the command string.

Button Status
After a button is triggered and command is sent out, the button will be grayed out before the requested task finish running,
such as:

Once the task finishes, the button will turn back to normal:

Setup Mode
Click " " to enter set up mode.

The setup mode has three blocks: Current Alignment System, Navigation Tree and Function Panel.

63

Home Page

Current alignment system allows user to choose different alignment systems. Navigation tree displays all settings in a top
down tree structure, it has four parts: Displays, Calibration, Alignment and System. Function panel appears for relevant
selections in the navigation tree. It provides live display, image acquire and process functions.

Displays
Display each calibration, feature finder' images and graphics in separate Multiple Display on page 65, or in one master
calibration or alignment display.

Calibration
Calibration category includes cameras and lights settings, each calibration's settings, checkerboard settings, calibration
results and camera pose adjustment function. See more information at Calibration Navigation on page 74.

Alignment
Alignment category includes camera and lights setting for alignment, each feature finder's vision tool setting, pose
computation if custom pose computer is used, manual alignment configuration and LCheck(length check between two
features) function. See more information at Aligment Navigation on page 115.

64

Home Page

System
System category contains settings such as recipe, image saving, align limit checking, etc. See more information at Alarms
and Status on page 183 and the following topics.

Display

Multiple Display
Multiple display is an UI control in AlignPlus which can display all images and graphics for one calibration or feature finder.
In AlignPlus program, each calibration or feature finder in the configuration wizard will have one independent multiple
display under Displays category of navigation tree in setup mode.

Here is an example of one feature finder display:

65

Home Page

Item Description
Mirror image horizontally

Rotate image 90 degrees to left side

Rotate image 90 degrees to right side

Choose pointer

Show only current image in MultipleDisplay, after it is clicked, the icon will be come , by clicking it again, it will

change back to and show all images

Pan image

Zoom in image

Zoom out image

Reset all settings

Show cross line centering at image center.

Live Image or Acquire Once
Multiple display goes with function panel in setup mode which provides live or acquire once function.

66

Home Page

l Live Image

Choose one multiple display, then click Start Live Display button to trigger live image display for selected display,
once it is in live mode, the button will change to Stop Live Display for you to stop anytime.

l Acquire

Choose one multiple display, then click Acquire to trigger selected display to acquire images once from collected
cameras.

Image Acquire and Process
Without sending a command, a calibration or feature finder task can be triggered using images acquire and/or process
function in functional panel under multiple display.

If current multiple display only needs to acquire images at one position, then just click Acquire & Process to run trigger the
calibration or feature finder task behind to acquire images and run vision task.

If current multiple display requires camera shuttling, then choose a position index first and click Acquire button if it's not the
last position and click Acquire & Process at the last position. Take a cross calibration display for example, it needs to
acquire images first at position0, and acquire and process at position1 to extract features and run cross calibration
calculation, then follow the steps marked below to run cross calibration manually.

67

Home Page

Note: After step 2 above, there will be no images showing on display though they're already acquired at position0,
they'll be shown after all images are acquired and processed.

Show Graphics
By default, multiple display will display both trained features and run time features during run time. If you want to hide trained
features, check Train Graphics off on function panel. Or if you want to show only raw images, check on Display Raw Image,
then all graphics will be hidden.

Here is an example of the different graphic displays:

Default Hide Train Graphics Display Raw Images

Alignment Master Display
In setup mode, each feature finder component in the configuration wizard will have an individual multiple display, and each
alignment component will have one display which merges all its connected finders' multiple displays. Besides that, all
feature finder displays from all stations will be merged into one alignment master display. The master display will also be
used in manual mode and auto mode.

68

Home Page

Master Display Layout
The default alignment master display layout may not be well arranged by default. In this case you can use master display
configuration function to adjust it.

Click Configure Master Display option under AlignPlus menu to open master display configuration function, it can be
opened when program is running in test mode so that you can see the effect quickly after layout is adjusted.

In the example below, the whole display area are divided into a 2X2 zones, FindPol, FindPre and FindPanel occupy the first
three zones. However, the last one is left empty.

69

Home Page

Here is the current display parameters.

To utilize the last zone, we can swap move FindPanel from zone3 to zone4, and then expand FindPol to the second row.
Here is the way to configure it.

Click Apply button at the button of configuration page, there will be an dialog pop up to confirm it's a success or not. If it's not
successful, the dialog will have a message to show what the error is such as:

If it says layout finished, then it is successfully applied.

70

Home Page

The new alignment master display will look like below after the change.

Calibration Master Display
Each calibration component in the configuration wizard will have an individual calibration multiple display in setup mode.
Besides that, all those multiple displays will be merged into one window as calibration master display in setup mode. The
calibration master display will also be used in manual mode.

Master Display Layout
The default calibration master display layout may not be well arranged by default. In this case you can use master display
configuration function to adjust it.

Click Configure Master Display option under AlignPlus menu to open master display configuration function, it can be
opened when program is running in test mode so that you can see the effect quickly after layout is adjusted.

71

Home Page

In the configuration page, check on Calibration first to enter into calibration display setting.

In this example, we can see that the whole display area are divided into a 2X2 zone, HECalib0 occupies the first zone,
whose row and column indexes are both 0, and spans are both 1; HECalib1 takes the second zone, whose row index is 0
and column index is 1; CrossCalib uses the third zone with row and column indexes both as 1. However, the last zone is
unused.

To utilize the last zone, we can swap zones of CrossCalib with HECalib1 display, and then expand CrossCalib display to
take both third and fourth zone, here is the way to configure it.

72

Home Page

Click Apply button at the button of the configuration page, there will be a dialog pop up to confirm it's a success or not. If it is
not successful, the dialog will have a message to show what the error is such as:

If it says layout finished, then it is successfully applied.

The new calibration master display will look like below after the change.

73

Home Page

Calibration

Calibration Navigation
Calibration category in navigation tree is used to enter and maintain settings for calibrations which include: Hand-eye
calibration and motion analysis, other general calibration settings, checkerboard settings, camera pose adjustment and
calibration results.

Here is one example of wizard configuration and its corresponding calibration pages in navigation tree:

Cameras and Lights
This page is used to set camera exposures and light intensities for each calibration. For more information please refer to
Cameras and Lights for Calibration on page 78.

Hand-eye Calibration
Each hand-eye calibration component in the configuration will have one group in calibration category which includes
settings for hand-eye calibration and related motion analysis. Here are the sub pages under each hand-eye calibration
group:

l Training Parameters

Set parameters for hand-eye calibration

l Looping Parameters

Set hand-eye calibration looping parameter

l Motion Analysis Image Display

Display for motion analysis task

l Motion Analysis Pose Gen

Set parameters for motion analysis

74

Calibration

l Motion Analysis Result

Display results of motion analysis

Cross Calibration
Each cross calibration will have one parameter setting page to set the lens distortion mode. See more information at Cross
Calibration Training Parameter on page 104.

Calibration Results
Calibration results collect all calibrations' results, you can check one by one their report data about camera location, overall
residual, etc. See more information in Calibration Results on page 109.

Cam Pos Adjustment
Camera pose adjustment allows user to input camera position offsets instead of recalibrate all cameras during mode
change. See more information in Cam Pose Adjustment on page 110

GigE Camera Configuration
This topic specifies GigE Camera hardware configuration. This should be done before running AlignPlus program.

First, make sure that camera is connected to network card whose speed (link up speed) is 1Gpbs since image acquisition
requires high speed data exchange, then follow the steps below to set up the camera IP address and configure the network
card parameters to make image acquisition smooth and stable.

1. Type "Cognex GigE Vision Configurator" in windows command window and open GigE Vision Configurator.

2. In the opened GigE Vision Configurator UI, change camera's IP address or Ethernet card IP address to make them in the
same subnet.

Here is the example to change Ethernet card IP address.

75

Calibration

3. Set maximum Jumbo Frame value as highest in Ethernet card properties.

4. Change the Receive Buffers property and choose the highest possible value in the list.

5. Change the Interrupt Moderation Rate property to Extreme in the list.

76

Calibration

6. Double check that the firewall is off and eBus Driver is enabled.

7. Click “Show Feature Snapshot” shown below in order to confirm that the control layer of GigE Vision protocol is working.

77

Calibration

Cameras and Lights for Calibration
Camera and lights page, located under Calibration category, is used to configure cameras and lights for calibrations.

This page consists of two sub pages: Global Settings and Exposure Settings. Global Settings page is for camera hardware
selection and global parameters setting. Exposure Settings page is for individual parameters setting for each calibration
when the corresponding global parameters are disabled.

Global Settings
Global Settings include camera settings and lighting settings.

Camera Settings
Global Settings allow users to select camera hardware devices for calibration, and set their global
exposures/brightnesses/gains.

The steps are:

1. Select a camera device from camera list (These are camera devices configured in the Configuration Wizard).

2. Select the corresponding camera hardware device from Device list.

3. Set proper exposure/brightness/gain for each camera to obtain images of appropriate contrast in live mode.

4. Specify ROI (Region Of Interest) of the select camera which allows the camera acquires images only from within the
configured ROI.

By default, ROI uses the whole image area. However, users can make it smaller to save image acquisition and
processing time. ROI setting is a setting of camera hardware, therefore it effects all images acquired by this camera
no matter it is used for calibration or feature finding.

Item Content/Type Description
Use Global
Exposure

Boolean True: use the same exposure time for this camera whenever it is used for a calibration
False: use local exposure times for different calibrations when this camera is used

78

Calibration

Item Content/Type Description
Device / List of all connected camera hardware devices with information of their IP addresses (if

they are GIGE Cameras) or serial numbers (if they are USB3 cameras), and brand names.
Click button to update if a connected camera is not listed

Use Global
Brightness

Boolean True: use the same brightness for this camera whenever it is used for a calibration
False: use local brightnesses for different calibrations when this camera is used

Exposure Double(in ms) Set exposure time for the selected camera

Use Global
Gain

Boolean True: use the same gain for this camera whenever it is used for a calibration
False: use local gains for different calibrations when this camera is used

Brightness Double Set the brightness value for each image acquisition.

Trigger
Mode

Manual/Auto/Semi Manual: Software triggering.
Auto: Acquires when it detects a transition on an external line.
Semi: Acquires when the software is running and the external line detects a transition.

Trigger
LowToHigh

Boolean Image acquisition is triggered on the rising edge of the trigger signal when Trigger Mode
is set as auto or semi-auto

Timeout
(msec)

Integer Set a timeout period that determines how long the acquisition device waits for an image to
become available before the application generates a timeout error.

Gain Double Increasing brightness of image by amplifying both signal and noise received from each
pixel. Not recommended to increase this value when there are other options to improve
image brightness.

Width Unsigned Integer The width of the ROI

Height Unsigned Integer The height of the ROI

OffsetX Unsigned Integer The x-value of the origin of the ROI

OffsetY Unsigned Integer The y-value of the origin of the ROI

Lighting Settings
A light controller added in the Configuration Wizard can be configured on this page for its global parameters.

Item Description
Lighting Available light controllers

On/Off Turn the selected channel's light on/off for image acquisition of the selected camera

Use Global True: use the same intensity for this channel of light whenever it is used for a calibration.
False: use local intensities for different calibrations when this light is used

Channel The channel index of selected light controller (the total number of channels for each controller is configured
in the Configuration Wizard).

79

Calibration

Item Description
Intensity
slide bar

Increase or decrease intensity of this channel by sliding the bar right or left (this function is convenient to
monitor intensity changes on live image).

Intensity edit
box

Input the intensity of current channel manually, the minimum value is 0, maximum is 255.

Exposure Settings
When a global exposure/brightness/gain of a camera or a global intensity of a light channel is disabled, the corresponding
local values for different calibrations should be configured individually on Exposure Settings page. Otherwise, this page can
be skipped.

Camera Settings
The setting steps are:

1. Choose one calibration.

2. Choose acquisition.

There is only one acquisition (only Exposure0) for one position in a calibration.

3. Choose camera position.

4. Set exposure/brightness/gain for current position.

5. Walk through all calibrations and all positions to set exposures/brightnesses/gains individually.

Lighting Setting
The lighting setting steps are:

80

Calibration

1. Choose a calibration from the calibration list

2. Select an acquisition

3. Select a camera position

4. Select a light controller, configure the on/off status and intensity for each of its channels

5. Choose another light controller, configure the on/off status and intensity for each of its channels

6. Walk through all calibrations and all acquisitions to set up their lighting respectively.

Tip: In the middle of lighting setting for different positions of a calibration, if you would like to turn off all lights before
moving on to the next position, you can click the "Turn Off" button at the lower left corner of this page to turn all lights off.

Hand-eye Calibration

Hand-eye Calibration Training Parameters
Hand-eye calibration parameters influence the computation of the relationship between the camera and the motion device. It
is used to provide the underlying tool information about the system being calibrated. The tool uses this information to
generate valid and accurate result. Hand-eye calibration parameters setting is located under Calibration category.

Checkerboard Based Hand-eye Calibration
The following section describes the various hand-eye calibration parameters that can be adjusted when a checkerboard is
used as a calibration target. It briefly describes how each parameter effects the computed calibration result.

81

Calibration

Home2D Unit Length Reference

l Use Calibration Plate

Indicates that an accurate calibration target is being used and that the parameters of the calibration target can be
assumed to be the ground truth during calibration. When an accurate calibration target is used, the relative positions
of the cameras computed during hand-eye calibration is accurate.

l Use Motion Stage

Indicates that the motion device is accurate. In this mode, the relative positions of the cameras are computed by the
rotation of the motion device. If the rotation is inaccurate or not sufficient, the estimated positions of the cameras
would be inaccurate and integrating data across cameras would become unreliable.

Target Type

l Single Calibration Plate

Indicates that a single calibration target is being used to hand-eye calibrate the multiple cameras. Following
calibration, all cameras would have the ability to map their features to a common Plate2D. The relative position of the
cameras are estimated accurately. The absolute cameras positions in Home2D is influenced by the accuracy and
extent of rotation during the hand-eye calibration process.

82

Calibration

l Separate Calibration Plates

Indicates that a separate calibration target is being used for each camera. In this mode, the checkerboard is used to
compute lens and perspective distortions, but the motion device is used to compute the relative and absolute
positions of each camera in Home2D. The accuracy of this computation depends upon the accuracy and extent of the
rotation during the calibration process. The user should use this option only if a single calibration target cannot be
used for the application.

Lens Distortion Mode

l Three Param Radial

This model calibrates for nonlinear optical distortion and perspective distortion. When compared with
PerspectiveAndRadialWarp, this mode adds additional coefficients that properly model the location of the optical
center. This mode is recommended for lenses with minimal to moderate distortion, typically those with focal lengths
greater than 6mm.

l SineTanLaw Projection

This model calibrates for nonlinear optical distortion and perspective distortion. When compared with
ThreeParamRadialWarp, this model uses a computation model that is appropriate for lenses with moderate to severe
distortion, typically those with focal lengths less than 6mm.

l No Distortion

This mode assumes that the relationship between pixels and Home2D is an affine transform. This mode does not
compensate for lens or perspective distortion. One benefit of this mode is it reduces processing time of image
correction significantly.

Minimum Rotation Span

This parameter is only available as a protection mechanism, to ensure that the user does not accidentally generate poses
with a smaller rotation angle span. During the hand-eye calibration process if the rotation angle span is less than this value,
there is no guarantee that the hand-eye calibration result would be accurate.

Motion Capability

Specify motion device's capabilities in moving calibration target.

Options
Degree Of Freedom
X Y Theta

Rotation And Translation 2 Axes √ √ √

Rotation Only x x √

Translation Only 1 Axis √ x x

Translation Only 2 Axes √ √ x

Rotation And Translation 1 Axis √ x √

Compute Motion Skew

83

Calibration

Enable or disable motion skew computation. Some lower accuracy motion stages may exhibit a skew between the X motion
axis and Y motion axis as shown in the figure below. Hand-eye calibration can compute the skew and correct it in transforms
between Home2D and the motion stage coordinate space. However, if there is not enough data to compute, the calculated
results may deviate far away from motion's real parameters. To avoid that, it is recommended to disable motion skew
computation when there are limited features to compute.

Timeout Enabled

Enable or disable timeout for calibration.

Timeout Value(ms)

The calibration time out value in milliseconds.

Part-based Hand-eye Calibration
Part-based hand-eye calibration parameters page has two significant user interfaces. The first, Calibration Parameters, is
for setting the hand-eye calibration parameters. The second, is for setting up feature finders that track features on the part
during the hand-eye calibration process.

84

Calibration

Calibration Parameters
The calibration parameters for part-based hand-eye calibration are almost the same as checkerboard based hand-eye
calibration. This section simply outlines differences:

1. Part-based hand-eye calibration does not have Home2D Unit Length Reference parameter. This is because the
calibration process depends upon the accuracy of the motion stage to provide a length reference.

2. The Target Type parameter that is described below:

l Tracked Part Dense Features

Used when the number of fiducial tracked during the hand-eye calibration process is more than three.

l Tracked Part Sparse Features

Used when the number of fiducial marks is at-least one but less than three.

Compute Image Skew

Enable or disable image skew computation. Image skew makes each pixel acquired on image drift away in y direction
proportionately to its distance to the top or bottom line of the image. Image skew could cause accuracy problems for both
feature locating and measurement, so it is better to get it corrected. However, when there are not enough features in part
based calibration, enabling image skew computation may result in incorrect compute result. Therefore, it is recommended to
disable it when features are sparse.

85

Calibration

Feature Finding User Interface
Feature Finding UI is a point features finder UI that is used to set feature finding vision tasks for part-based hand-eye
calibration. Before start adding vision tools, the feature finding UI should first have images for each camera. To get those
images, one can first select the related part-based hand-eye calibration display which is under Display category, and then
click Acquire & Process button in function panel below.

After the images have been acquired, the next step in the setup to be completed is in the training parameters page where
feature finders should be added for part-based hand-eye calibration. Below is an example of tracking one fiducial mark
using PatMax Finder on page 121.

86

Calibration

If there are more features to be tracked, you can add more feature finders under each camera. One thing to pay attention is
that hand-eye calibration will track each feature through the whole hand-eye calibration process, accumulating its positions
at every motion pose for final computation. So, during feature finder setting, make sure those features will be correctly and
uniquely found under each FOV during hand-eye calibration process, and their output positions should always be within
FOV.

Looping Parameters
Looping parameters is used to set hand-eye calibration poses. It is located in certain hand-eye calibration group under
Calibration category in setup mode.

AlignPlus can generate applications where the application generates the poses during hand-eye calibration. The poses
contain the recommended translation only poses and rotation only poses. The poses are determined by the following
parameters

• The maximum and minimum limits for the X axis, and the number of samples when moving between the two limits

• The maximum and minimum limits for the Y axis, and the number of samples when moving between the two limits

• The maximum and minimum limits for the Theta axis, and the number of samples when moving between the two limits(The
rotation angle here is right-handed, which means positive angle is from positive x axis to positive y axis).

Default Loop
The setting that is shown below shows the default values for the above parameters, it requires motion device to move along
X, Y and Theta axes to run through all sample points.

87

Calibration

The figure below shows the path that will be taken by the motion device for default motion parameters.

The coordinates of each point are listed below:

Calibration Point X Y Theta
1 -2 -2 0

2 0 -2 0

3 2 -2 0

4 2 0 0

5 0 0 0

6 -2 0 0

7 -2 2 0

8 0 2 0

9 2 2 0

10 0 0 -1

11 0 0 1

88

Calibration

Note:
l The second point of rotation is (0,0,0) which is the same of point 5, thus this point is ignored when for rotation
iteration.

Loop With Two Axes
X-Theta Loop Parameters

When there are only X and Theta axes in the motion device, the maximum and minimum limits of Y axis should be set both
as 0, and number of steps should be set as 1.

The figure below shows the path that will be taken by the motion device for above motion parameters.

Y-Theta Loop Parameters

If it's a Y-Theta motion device, then the setting should be as below:

89

Calibration

The figure below shows the path that will be taken by the motion device for above motion parameters.

X-Y Loop Parameters

If the motion device has only X and Y axes, then the limits of Theta should be set as 0, and steps should be set as 1.

The figure below shows the path that will be taken by the motion device for above motion parameters.

90

Calibration

Loop With Single Axis
When there are only one axis in a motion device, then just set the all limits of unavailable axes as 0, and their number of
steps as 1. Here is an example of only X axis.

The figure below shows the path that will be taken by the motion device for above motion parameters.

Note: The motion capability setting(Rotation And Translation 2 Axes, Rotation And Translation 1 Axis, Translation Only
2 Axes, etc) in hand-eye calibration training parameter should match the motion capability indicated in looping
parameters.

91

Calibration

Motion Analysis
In alignment or assembly applications, the final alignment or assembly performance is dependent on not only the
repeatability and accuracy of feature finding and pose computation in the vision system, but also depends on the motion
device's performance. The motion device's condition significantly affects the final alignment or assembly results, therefore, to
evaluate motion device's performance is often a recommended step during machine setup.

Motion analysis is a function in AlignPlus that is designed to serve this purpose. It tracks certain calibration targets while
motion device moves the target or camera to a set of given locations to evaluate motion's stability and accuracy, therefore,
detects any motion issues including but not limited to vibration, repeatability, or drift.

Motion analysis function is automatically generated under each hand-eye calibration component without having the user
configure it during wizard configuration. In run time, motion analysis uses the same motion device that is used in its
corresponding hand-eye calibration.

Motion Analysis Process
Motion analysis process resembles vision-guided hand-eye calibration process in which motion device moves at command
of the vision system. The steps are as follows:

1. The calibration target is affixed to the motion device for stationary-camera applications. For moving camera
applications, the calibration target is placed on the surface that would contain the part to be aligned

2. The motion device is moved to working position provided by the vision system.

3. At working position, following a settling time, the image of the calibration target is captured, checkers or trained
feature are located, and their coordinates are accumulated.

4. The motion device moves to one of the target positions in the position list provided by vision system.

5. After the steps 2- 4 have been repeated sufficient times, the motion analysis results are computed.

Motion Analysis Setup
Motion analysis setup consists of the following:

1. Setup tracking features

2. Choose coordinate space

3. Chose the test type for motion device performance analysis.

Setup tracking features
Motion analysis tracks one feature point on calibration target. The calibration target type is dependent on its hand-eye
calibration target type set in Setup wizard. If it is calibration plate, motion analysis tool will automatically extract checker
features on plate and use the mass center of all extracted features in train time as the point to track; If it is a real part, motion
analysis tool will use the origin of trained feature set by user as the point to track.

Choose coordinate space
There are three different spaces options that motion analysis can choose.

l Raw2D

When the perspective distortion and lens distortion are negligible in acquired image, one can track feature in Raw2D
(raw image space) directly. The motion analysis result report is based on pixel, however this can be converted
manually into millimeter using pixel resolution to better interpretation of the results.

92

Calibration

l Checkerboard Calibration

Checkerboard calibration corrects lens distortion and perspective distortion on acquired image and output a
distortion free image with selected space as "Checkerboard Calibration". In Checkerboard Calibration space,
features can be located more accurately if those distortions are not negligible.

l Home2D

With hand-eye calibration result applied, the input images for motion analysis will have Home2D space available. If
Home2D is chosen, the coordinates of extracted features will be in Home2D.

Performance Analysis
There are four ways to define how motion device should move during evaluation, each with different evaluation purposes:

l Static Acquisition

In this mode, motion device stay stationary(which means there is no target positions), and let vision system locates
features repeatedly at working position to evaluate whether there is a motion vibration issue.

l Static Motion

In this mode, motion device moves between working position and a fixed target position, repeatedly or moves
between working position and some boundary target positions. This mode is used to evaluate motion device's
repeatability.

l Dynamic Motion

In this mode, motion device moves back and forth between working position and some customized target positions.
This is used to check whether there is a backlash in motion device.

l Random target

In this mode, motion device moves back and forth between working position and some random target positions to
check the accuracy of absolute position of motion device.

Motion Analysis Image Display
Motion analysis image display shows the images and their graphics of motion analysis task on a Multiple Display on
page 65.

Motion analysis task uses the same cameras and their acquisition settings as those used in corresponding hand-eye
calibration task. Therefore, you do not need to configure camera and their exposures for motion analysis separately once
they have already been set for hand-eye calibration.

93

Calibration

Motion Analysis Pose Generator
Motion analysis pose generator is used to set up parameters, train features, and run motion analysis. It can be found under
its hand-eye calibration group.

In the setting page, choose one of the four options (Static Acquisition, Station Motion, Dynamic Motion, or Random Target)
from "Test Mode" drop-down list to set up certain evaluation.

Static Acquisition
Static acquisition moves motion to one specific position and then acquire images repeatedly. This purpose of this test is to
evaluate whether there is a vibration issue in current machine.

94

Calibration

Settings

l Test Mode

Choose Static Acquisition.

l Test Plan

There is only one option (Basic) under this mode.

l Run Mode

Options

UncorrectedTrain Train features in Raw2D

UncorrectedRun Run task in Raw2D

Calibration Run checkerboard calibration at working position

CorrectedTrain Train features in Plate2D

CorrectedRun Run task in Plate2D

HECorrectedTrain Train features in Home2D

HECorrectedRun Run task in Home2D

l Repeat Count

how many times user want to do the test, the default is 20.

l Working Position

Specify the position where images will be acquired, features being tracked and accumulated. Motion analysis will
only acquire images at working position.

Train Feature
Before running motion analysis, target feature should be trained first regardless of feature type.

Checkerboard Feature
Under checkerboard-based hand-eye calibration, motion analysis can only use checkerboard for feature tracking.
Checkerboard plate does not need extra feature finder since motion analysis tool will automatically select the mass point of
extracted checkers as target feature to track. User only needs to select the space for feature and then train.

95

Calibration

1. Raw2D Train Process

For Raw2D space training: first select UncorrectedTrain in Run Mode drop-down list, then input repeat count as 1,
and then click Run Analysis to train the feature.

It is the same process when Home2D space is used.

2. Plate2D Train Process

For Plate2D space training, an extra step to run checkerboard calibration is needed: Choose Calibration in Run
Mode drop-down list, input repeat count as 1 and then click Run Analysis to run checkerboard calibration for all
cameras used in motion analysis task.

After checkerboard calibration is done, select Calibration Train in Run Mode and click Run Analysis again to train
feature.

Part Feature
Under part-based hand-eye calibration, motion analysis can only use real part for feature tracking. When the program is
generated, there will be an extra page named "Motion Analysis Setup" on HMI for user to set up feature finder for motion
analysis task.

Here are the steps to train features:

96

Calibration

1. Acquire images by clicking Run Analysis in train mode.

2. Set feature finders in Motion Analysis Setup page. Since motion analysis only tracks one feature for each camera,
only one-point feature finder should be added under each camera.

3. Run Step1 again to train feature.

The same process above applies to feature training in either Raw2D or Home2D space.

Note: Even Repeat Count is set as larger than 1, motion analysis will only run once when Run Mode is
"UncorrectedTrain", "Calibration", or "CalibrationTrain".

Run
After features is trained, change Run Mode to UncorrectedRun/CorrectedRun/HECorrectedRun depending on in which
space feature is trained; Set parameters such as repeat count, working position, and then click Run Analysis button to run
the motion analysis procedure.

97

Calibration

Static Motion
Static motion mode moves motion device back and forth between working position and target position until it has repeated
this move sufficient times. The target position could either be a fixed position or one position from a set of boundary positions
depending on which test plan user choose: Simply,Moderate, or Fully.

Simply
In simply test plan, motion analysis function will control the motion device to move back and forth between working position a
fixed target position repeatedly. The train time process is the same as described in Static Acquisition. Here are steps to set
up for run:

1. Select Static Motion in test mode.

2. Select Simply in test plan.

3. Choose UncorrectedRun/CorrectedRun/HECorrectedRun in run mode depending on in which space features were
trained because run time space and train time space should be the same.

4. Input repeat count, the default value is 20.

5. Input working position and target position.

98

Calibration

6. Click Modify to confirm target position if it has been changed.

7. Click Run Analysis to run the motion analysis.

Moderate
In moderate test plan, motion analysis function will move motion device back and forth between working position and a
serial of boundary positions within inputted Max Limit Pose and Min Limit Pose. The train time process is the same as
described in Static Acquisition. Here are steps to set up for run:

1. Select Static Motion in test mode.

2. SelectModerate in test plan.

3. Choose UncorrectedRun/CorrectedRun/HECorrectedRun in run mode depending on in which space features were
trained because run time space and train time space should be the same.

4. Input repeat count, the default value is 20.

5. Input working position, max limit pose and min limit pose.

6. Click Run Analysis to run the motion analysis.

Let us assume the max limit pose is (X2, Y2,Ө2) and min limit pose is (X1, Y1,Ө1), then the generated set of poses will be as
listed in table below.

Index Acquisition Position
1 (X2, Y2,Ө2)

2 (X2, Y2,Ө1)

3 (X2, Y1,Ө2)

4 (X2, Y1,Ө1)

5 (X1, Y2,Ө2)

6 (X1, Y2,Ө1)

7 (X1, Y1,Ө2)

8 (X1, Y1,Ө1)

Once the Run Analysis button is clicked, motion device will move to working position to let vision take a set of images, and
then move to the first position in the table and come back to working position where vision takes another set of images, then
move to the second position in the table and come back again to working position to acquire images, and so on. After the

99

Calibration

last position has been moved to, the target position will go back to the first position of the table until repeated moves have
reached specified count.

Fully
In fully test plan, motion analysis function will move motion device back and forth between working position and a full set of
boundary positions. The full set of positions are consisted of three sub sets which moves motion device along single axis
move, two axes or three axes within inputted maximum and minimum positions.

The train time process is the same as described in Static Acquisition. The run time process is the same with moderate test
plan's excepting changing test plan to Fully.

Let's assume the max limit pose is (X2, Y2,Ө2) and min limit pose is (X1, Y1,Ө1), the single axis move will have 6 poses, two
axes move will have 12 poses, and three axes move will have 8 poses.

Index Single Axis Move Two Axes Move Three Axes Move
1 (X2, 0, 0) (X2, Y2, 0) (X2, Y2,Ө2)

2 (X1, 0, 0) (X2, Y1, 0) (X2, Y2,Ө1)

3 (0, Y2, 0) (X1, Y2, 0) (X2, Y1,Ө2)

4 (0, Y1, 0) (X1, Y1, 0) (X2, Y1,Ө1)

5 (0, 0,Ө2) (X2, 0,Ө2) (X1, Y2,Ө2)

6 (0, 0,Ө1) (X2, 0,Ө1) (X1, Y2,Ө1)

7 / (X1, 0,Ө2) (X1, Y1,Ө2)

8 / (X1, 0,Ө1) (X1, Y1,Ө1)

9 / (0, Y2,Ө2) /

10 / (0, Y2,Ө1) /

11 / (0, Y1,Ө2) /

12 / (0, Y1,Ө1) /

Once the Run Analysis button is clicked, motion device will move the same way as in moderate test plan except that fully
test plan has a larger set of target positions to iterate.

Dynamic Motion
Under dynamic motion test mode, motion device moves between working position and a set of customized target positions.
Dynamic motion mode is used to analyze backlash of motion system. The train time process is the same as described in
Static Acquisition. Here are the steps to set parameters for run:

100

Calibration

1. Select DynamicMotion in test mode.

2. There will be only one option for test plan: CustomizedPath

3. Choose UncorrectedRun/CorrectedRun/HECorrectedRun in run mode depending on in which space features were
trained because run time space and train time space should be the same.

4. Input repeat count, the default value is 20.

5. Input working position where images will be acquired.

6. Input one target position and click Add to add it to moving path. Add more target positions if you like. If certain target
position needs to be modified, select that position in the drop down list, modify it in edit boxes of target position, and
click Modify to save the changes. If that position should be removed, select it from drop down list, then click Delete
button.

7. Click Run Analysis to run the motion analysis.

Once the Run Analysis button is clicked, motion device will move to working position to let vision take a set of images, and
then move to the first position in the target position list and come back to working position where vision takes another set of
images, then move to the second position in the list and come back to working position to acquire images again, and so on.
After the last position in the list has been moved to, the target position will go back to the first position of the list until repeated
moves have reached specified count.

Random Target Motion
In random target motion mode, motion device moves between working position and random target positions repeatedly. The
random positions are generated by motion analysis tool within inputted max and min limit poses. Random target motion is
used to evaluate motion device's absolute position repeatability.

The train time process is the same as described in Static Acquisition. Here are the steps to set parameters for run:

101

Calibration

1. Select RandomTargetMotion in test mode.

2. There will be only one option for test plan: RandomOneTarget

3. Choose UncorrectedRun/CorrectedRun/HECorrectedRun in run mode depending on in which space features were
trained because run time space and train time space should be the same.

4. Input repeat count, the default value is 20.

5. Input working position where images will be acquired.

6. Input max limit pose and min limit pose where random position will be generated within.

7. Click Run Analysis to run the motion analysis.

Once the Run Analysis button is clicked, motion device will move to working position to let vision take a set of images, and
then move to a random position generated by motion analysis tool and come back to working position where vision takes
another set of images, then move another random position and come back to working position to acquire images again, and
so on. Repeat this process until it reaches specified times.

Motion Analysis Result
This page shows result of motion analysis, it is located in hand-eye calibration group under Calibration category in setup
mode.

102

Calibration

After motion analysis finishes running, switch to motion analysis result page, and select one camera from the camera index
list, then the result for selected camera will be shown as below:

l The first table will show the statistics data like mean value, standard deviation, maximum and minimum values of the
positions of tracked features.

l The graphic on the right side shows all tracking points' scatter plot.

l The second table shows all tracking points' X and Y coordinates in selected space.

l Click Output to CSV button to save the data to a CSV file.

103

Calibration

Cross Calibration Training Parameter
Cross Calibration Training parameters lies under Calibration category of Setup page.

This page only have one parameter to configure: Lens Distortion Model

Lens Distortion Mode

l Three Param Radial

This model calibrates for nonlinear optical distortion and perspective distortion. When compared with
PerspectiveAndRadialWarp, this mode adds additional coefficients that properly model the location of the optical
center. This mode is recommended for lenses with minimal to moderate distortion, typically those with focal lengths
greater than 6mm.

l SineTanLaw Projection

This model calibrates for nonlinear optical distortion and perspective distortion. When compared with
ThreeParamRadialWarp, this model uses a computation model that is appropriate for lenses with moderate to severe
distortion, typically those with focal lengths less than 6mm.

l No Distortion

This mode will model perspective distortion only; any nonlinear optical distortion is ignored. By comparing the
residual error values produced using this computation mode with the residual error values from
ThreeParamRadialWarp or SineTanLawProjectionWarp you can improve your understanding of the individual
sources of residual error.

Checkerboard Settings
If a calibration is checkerboard-based, in the generated application, there will be one checkerboard settings page under that
calibration's group on HMI which allows users to configure the checkerboard parameters for the calibration. For example, the
HECalib0 and CrossCalib shown in the screenshot below both have a Checkerboard Settings page under them.

104

Calibration

if all checkerboard-based based calibrations use the same checkerboard parameters, users can choose to only set the
parameters on the master Checkerboard Settings page and then apply the settings to all calibrations. The master
Checkerboard Settings page is located directly under "Calibration" category in the setup mode of the application.

Parameters
All Checkerboard Settings pages have the same parameters to set:

105

Calibration

Calibration Plate Parameters

l OriginX

Gets/sets the the x value of the designated origin to be used for labeling of returned feature points. The vertex closest
to point (OriginX, OriginY) will be used as the origin for point correspondence when Label Mode is
CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin.

When not operating in CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin mode, this property
is ignored.

l OriginY

Gets/sets the the x value of the designated origin to be used for labeling of returned feature points. The vertex closest
to point (OriginX, OriginY) will be used as the origin for point correspondence when Label Mode is
CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin.

When not operating in CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin mode, this property
is ignored.

l Physical Grid Pitch X

Gets/sets the physical units of grid pitch along the x-axis of the calibration plate coordinate system (Plate2D, see the
remarks section of Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardLabelModeConstants). It is
the distance between any two adjacent checker vertices whenever the line joining them is parallel to the x axis of
Plate2D.

Throws System.ArgumentOutOfRangeException: The value is less than or equal to 0.

l Physical Grid Pitch Y

Gets/sets the physical units of grid pitch along the y-axis of the calibration plate coordinate system (Plate2D, see the
remarks section of Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardLabelModeConstants). It is
the distance between any two adjacent checker vertices whenever the line joining them is parallel to the y axis of
Plate2D.

Throws System.ArgumentOutOfRangeException: The value is less than or equal to 0.

Feature Extraction Parameters
For Algorithm and Label Mode, please refer to Feature Extractor.

106

Calibration

l Need both checkers

Gets/sets the flag to indicate whether the tool should find only vertices shared by two interior light checkers.

True: the extractor will find only those vertices belonging simultaneously to two interior light checkers(An interior
checker is one that does not touch the image boundary or the border of the calibration plate).

False: the extractor will attempt to find all vertices of all interior light checkers.

l Precision Threshold

Gets/sets the threshold for discarding vertices with excessive positional uncertainty, specified in pixels.

Due to noise and distortion, there are errors in the computed vertex positions. The algorithm internally estimates the
position uncertainty for all found vertices, and excludes those from the final result whose position uncertainty
estimates exceed the threshold specified here.

Throws System.ArgumentOutOfRangeException: If the input value is less than 0 in the setter.

l Uniform Lighting

Gets/sets the flag to indicate whether the checkerboard is expected to be uniformly illuminated in the run-time
images.

True: the extractor expects the light checkers to be uniformly illuminated, and uses an efficient technique for finding
the vertices which can improve the speed performance. However, if in fact the illumination is not uniform, this
technique may not find certain vertices that are severely affected by the non-uniform lighting.

False: the tool performs better in presence of severe non-uniform lighting, and may find more vertices in these cases.

Speed Up Parameters
l Do Checkers Cover FOV

Gets/sets whether the checkers are expected to entirely cover the field of view. Note that the purpose of this property
is to improve speed performance when the checker coverage is known. This property should only be set to true if it is
known beforehand that the checkers will cover the entire image for each camera at each pose. Note that Do
Checkers Cover FOV is only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive.

l Minimum Checker Angle

Gets/sets the minimum expected angle of checker orientations. Note that if the new value is larger than Maximum
Checker Angle, then Maximum Checker Angle will be changed to the new Minimum Checker Angle. The purpose of
Minimum and Maximum Checker Angle is to improve speed performance when the checker orientations are known.
Minimum and Maximum Checker Angle are only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive.

l Maximum Checker Angle

Gets/sets the maximum expected angle of checker orientations. Note that if the new value is smaller than Minimum
Checker Angle, then Minimum Checker Angle will be changed to the new Maximum Checker Angle. The purpose of
Minimum and Maximum Checker Angle is to improve speed performance when the checker orientations are known.
Minimum and Maximum Checker Angle are only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive

Change Checkerboard Parameters
At any time, change of a checkerboard parameter will lead to its corresponding calibration result invalid. To avoid users from
making calibration result invalid unintentionally, this function will ask users to confirm the action before leaving current
settings page.

107

Calibration

l Save and Continue

Erase current calibration data and save the checkerboard parameter changes to current product recipe

l Continue without Saving

Erase current calibration data, keep the checkerboard setting changes only on current settings page without saving
them to recipe

l Cancel

Cancel the changes on this page and do not change current calibration data

For the master Checkerboard Settings page, after making changes to parameters, users need to click "Apply To All" button to
apply the changes to all other Checkerboard Settings pages that are under specific calibration groups.

After the "Apply To All" button is clicked, there will be a pop-up dialog showing the calibration names and their checkerboard
setting parameters that are different with the master page's. These parameters' current values and new values if the master
parameters are applied will also be listed out for users to compare. Click "Apply" button to apply master page changes to all
calibration's checkerboard settings, otherwise click "Cancel".

108

Calibration

After applying to all and before leaving the master setting page, the application will pop up another dialog to remind users
whether to save the checkerboard parameter changes caused by the master page to the current product recipe of the
application.

l Save and Continue

Erase current calibration data and save the checkerboard parameters changes to the current product recipe

l Continue without Saving

Erase current calibration data, keep the checkerboard setting changes only on Checkerboard Settings pages without
saving them to recipe.

Calibration Results
Calibration Results page shows all calibration's results, it is located under Calibration category

Select one calibration from the drop-down list at the upper left corner of page.

109

Calibration

For hand-eye calibration, it includes reports:

l Hand-eye calibration summary

l Actual Stage Motion

l Camera Residual per View

l Motion stage validation

l UltraCalibration Results (only available when UltraCalibration is enabled in configuration wizard)

For other calibration, it will only have the Camera Residual Per View report.

For more information about each item in the report, please refer to Hand-eye Calibration Result Report and Stage
Validation Result on page 1 under Calibration\Calibration Types\Hand-eye Calibration Overview category in AlignPlus
Concept document.

Cam Pose Adjustment
Cam Pos Adjustment page allows users to input new camera positions in gantry's space and map them into Home2D
coordinates for each alignment/assembly calibration results during mode change, so that recalibration for
alignment/assembly can be exempted. Cam Pos Adjustment page is located under Calibration category in Setup mode of
the application.

110

Calibration

Cam Pose Adjustment page lists all camera acquisition positions for all alignment/assembly calibrations in both Gantry2D
and Home2D, so that after users' manual inputs of cameras' new positions in Gantry2D, their updated values in Home2D
can be observed immediately.

Take the HECalib shown above for example, the columns and their descriptions are as below:

Column Description Editable

Camera Camera acquisition position X

Calibrated Whether or not the camera is one-time calibrated X

XCalib Gantry X-element of camera position in Gantry2D when the camera was hand-eye calibrated √

YCalib Gantry Y-element of camera position in Gantry2D when the camera was hand-eye calibrated √

XRunTime Gantry X-element of new camera position in Gantry2D when it is repositioned for model change √

YRunTime Gantry Y-element of new camera position in Gantry2D when it is repositioned for model change √

XCalib Stage0 X-element of camera position in Home2D when the camera was hand-eye calibrated X

YCalib Stage0 Y-element of camera position in Home2D when the camera was hand-eye calibrated X

Theta Calib Stage0 Theta-element of camera position in Home2D when the camera was hand-eye
calibrated

X

XRunTime Stage0 X-element of new camera position in Home2D during run time after the model change X

YRunTime Stage0 Y-element of new camera position in Home2D during run time after the model change X

Theta RunTime
Stage0

Theta-element of new camera position in Home2D during run time after the model
change

X

After these cameras' positions have been adjusted physically for model change, users can follow the steps below to update
them in Home2D:

111

Calibration

1. Load Recipe

Since one time calibration results are only used during model change, they are not loaded by the application when it
launches. To load them, one need to manually click the "Load Recipe" button at the bottom right corner of this page.

After loading, the "Calibrated" column of all camera positions should be marked as " ".

2. Input new camera positions

Manually input new values in "XRunTime Gantry" and "YRunTime Gantry" columns for each camera acquisition
positions.

3. Run calculation

Click the "Run Calculation" button so that the application can recalculate cameras' positions in Home2D based on
users' inputs in Gantry2D.

After the button is clicked, the run time camera positions in Home2D should be updated right away.

4. Save recipe

Click "Save recipe" button to save the changes to the current product recipe. These new positions will be saved to
alignment recipe so that they will be loaded upon product changes.

One Time Calibration Results
One time calibration for each camera can be triggered by manual buttons on HMI in manual mode of the application, or be
by "ACB, AC" or "HEB, HE, HEE" commands from external devices. For more information about these commands, please
refer to Motion Guided Hand-eye Calibration Commands on page 1.

Note: The x, y, and theta values in these commands should be the moving camera's absolute positions in gantry's
space at each calibration point.

After the calibration is done, the calibration result is available on page named "OneTime Calibration Results" which is
located under Calibration category.

112

Calibration

This page displays each camera's one time calibration (essentially moving hand-eye calibration) results in gantry's space,
one can check other camera's results by choosing that camera from the camera list on the upper left corner of this page. For
detailed information about hand-eye calibration results, please refer to Hand-eye Calibration Result Report on page 1.

113

Calibration

114

Calibration

Alignment

Aligment Navigation
Alignment category in navigation tree is used to input and maintain settings for feature finding and alignment which include:
camera and lights settings, vision tool settings for each feature finder, customization for pose computer, configurations for
manual align and L-Check.

Camera and Lights
This page is used to set camera exposures and lights intensities for each feature finder. For more information please refer to
Camera and Lights for Alignment on page 116.

Feature Finders
Each finder component added in the Configuration Wizard has one setup page on HMI after the application is generated.
The page name is the same as the component name, for example, "Features0", "Features1". For more information, please
refer to Configure Features Finder on page 119.

Pose Computation
Each alignment component configured in the Configuration Wizard has one pose computation page on HMI after the
application is generated. This page is editable only if "Use Custom ToolBlock" option is selected for the alignment

115

Alignment

component. For more information about how to customize pose computation on this page, please refer to Custom Pose
Computation on page 165.

Manual Align Config
Manual Align function allows operators to manually select the feature location on a pop-up window when a run time feature
is not found. For more information, please refer to Manual Align Config on page 167.

L-Check
L-Check function checks if the distance between pairs of point features are within specifications, see more information about
L-Check on page 171.

Camera and Lights for Alignment
Camera and lights page, located under Alignment category, is used to configure cameras and lights for feature finders.

This page consists of two sub pages: Global Settings and Exposure Settings. Global Settings page is for camera hardware
selection and global parameters setting. Exposure Settings page is for individual parameters setting for each features finder
when the corresponding global parameters are disabled.

Global Settings
Global Settings include camera settings and lighting settings.

Camera Settings
Camera Settings allow users to select camera hardware devices for feature finding, and set their global
exposures/brightnesses/gains.

The steps are:

1. Select a camera device from camera list (These are camera devices configured in the Configuration Wizard).

2. Select the corresponding camera hardware device from Device list.

3. Set proper exposure/brightness/gain for each camera to obtain images of appropriate contrast in live mode.

116

Alignment

Item Content/Type Description
Use Global
Exposure

Boolean True: use the same exposure for this camera whenever it is used for a feature finder
False: use local exposures for different feature finders when this camera is used

Device / List of all connected camera hardware devices with information of their IP addresses (if
they are GIGE Cameras) or serial numbers (if they are USB3 cameras), and brand names.
Click button to update if a connected camera is not listed

Use Global
Brightness

Boolean True: use the same brightness for this camera whenever it is used for a feature finder
False: use local brightnesses for different feature finders when this camera is used

Exposure Double(in ms) Set exposure time for the selected camera

Use Global
Gain

Boolean True: use the same gain for this camera whenever it is used for a feature finder.
False: use local gains for different feature finders when this camera is used.

Brightness Double Set the brightness value for each image acquisition.

Trigger
Mode

Manual/Auto/Semi Manual: Software triggering.
Auto: Acquires when it detects a transition on an external line.
Semi: Acquires when the software is running and the external line detects a transition.

Trigger
LowToHigh

Boolean Image acquisition is triggered on the rising edge of the trigger signal when Trigger Mode
is set as auto or semi-auto.

Timeout
(msec)

Integer Set a timeout period that determines how long the acquisition device waits for an image to
become available before the application generates a timeout error.

Gain Double Increasing brightness of image by amplifying both signal and noise received in each pixel.
Not recommended to increase this value when there are other options to improve the
image brightness.

Lighting Settings
A light controller added in the Configuration Wizard can be configured on this page for its global parameters.

Item Description
Lighting Available light controllers

On/Off Turn the selected channel's light on/off for image acquisition of the selected camera

Use Global True: use the same intensity for this channel of light whenever it is used for a feature finder.
False: use local intensities for different feature finders when this light is used

Channel The channel index of selected light controller (the total number of channels for each controller is configured
in the Configuration Wizard).

Intensity
slide bar

Increase or decrease intensity of this channel by sliding the bar right or left (this function is convenient to
monitor intensity changes on live image).

Intensity edit
box

Input the intensity of current channel manually, the minimum value is 0, maximum is 255.

117

Alignment

Exposure Settings
When a global exposure/brightness/gain of a camera or a global intensity of a light channel is disabled, the corresponding
local values for different feature finders should be configured individually on Exposure Settings page. Otherwise, this page
can be skipped.

Camera Setting
The setting steps are:

1. Choose a feature finder from the feature finder list

2. Choose an acquisition

By default, there is only one acquisition (Exposure0) in the option list. However, if the Number of Images per
Camera is configured as more than 1 in the Configuration Wizard (such as shown blow), then there will be more
acquisitions (such as Exposure0, Exposure1) that require respective camera settings.

3. Choose a camera position

4. Set exposure/brightness/gain for current position, current acquisition

5. Check whether acquisition should be disabled under current position

True: camera will acquire image at current position, current acquisition for selected feature finder

False: camera will not acquire image at current position, current acquisition for selected feature finder

6. Walk through all feature finders, all acquisitions, and all positions to set exposures/brightnesses/gains respectively.

118

Alignment

Lighting Setting
The lighting setting steps are:

1. Choose a feature finder from the feature finder list

2. Select an acquisition

3. Select a camera position

4. Select a light controller, configure the on/off status and intensity for each channel

5. Choose another light controller, configure the on/off status and intensity for each channel

6. Walk through all feature finders and all acquisitions to set up their lighting respectively.

Tip: In the middle of lighting setting for different positions of a feature finder, if you would like to turn off all lights before
moving on to the next position, you can click the "Turn Off" button at the lower left corner of this page to turn all lights off.

Configure Features Finder
A Features Finder needs to be configured by user manually on HMI and saved in alignment recipe during machine setup. It
is located under Alignment category. The alignment names and features finder names shown on the Navigation Tree are
identical with the names of the corresponding components configured in the Configuration Wizard, such as "Alignment0"
and "Features0" in the screenshot below:

A features finder is an AlignPlus toolblock that receives images from the multiple cameras that capture the image of a part,
locates the features using the finders that are added by the user, and outputs a list of found features. The feature type could
be point, line, or generic feature depending on the type selected in the corresponding finder component in the Configuration
Wizard. Features finders therefore are classified into three types: Point Features Finder, Line Features Finder, and Generic
Features Finder.

l Point Features Finder

There are four types of point finders that users can choose for setup: PatMax Pattern(image), PatMax Pattern
(synthetic), Corner Finder, and Custom Toolblock.

119

Alignment

l Line Features Finder

There are two types of line finders that users can choose for setup: Line Finder and Custom Toolblock.

l Generic Features Finder

Generic feature finder only has one type: Custom Toolblock.

The following chapters will walk through step-by-step settings for all features finders and their finders within.

Point Features Finder
This UI controller allows the configuration of multiple point feature finders (for example, corner finders). When executed in a
sequence, the block behind runs the configured finders on its input images and outputs a list of the found points and
graphics.

Settings
Point Features Finder UI consists of four areas: Images, Main Display, Finders, and Details.

120

Alignment

Images
This area lists out all available images for feature finding. The number of images is the same with the image input pins of
bonded Point Feature Finder block inside the program. Images are visible on this UI only when there are valid images fed
into the features finder block. If not, this area appears as blank and no further operations can be done.

Main Display
By clicking one of the images, the main display area will show the selected image in larger scale.

Finders
The finder area maintains all finders that are used to find features. If a finder locates feature using only one input image, that
finder should be added under the corresponding camera icon. Otherwise, it should be added under “Multi Camera Finders”
category.

There are several buttons allow user to create/edit/modify finders.

l New: Create a new finder such as PatMax Finder on page 121 (image or synthetic), Corner Finder on page 126, or
Custom Toolblock Point Finder on page 129.

l Edit: Edit the selected finder(rename, copy, delete, or edit)

l Run: Run the selected finder and show the result.

If a finder runs successfully with a valid output feature, there will be a small green light ' ' shown at its right side.
Otherwise, the light icon will be ' ', which indicates the feature is invalid or not found and will be ignored for pose
computing. In this case, one need to resolve the error inside and make the finder run successfully.

l Features: Rename features found by finders. Feature names are the same with their finder names by default.
However, users can rename to make them more meaningful. This function can also be used to pair features. For
example, in assembly applications where Paired Features mode is used, features between two parts need to be
paired using the same feature names.

Details
Details area is used to set parameters for selected finder.

PatMax Finder
PatMax Finder finds a point feature using PatMax tool on input image.

Add
PatMax Finder is available in Point Features Finder HMI control. The steps to add it are:

1. Select one image

2. Click "New" button under the Finders panel

3. Choose "PatMax Pattern (image)" or "PatMax Pattern (synthetic)", then a PatMax finder will be available under the
selected image for user to edit.

121

Alignment

PatMax Pattern(Image) Finder
PatMax Pattern (Image) finder is a simplified PatMax tool which makes user focus on train time and run time parameter
settings.

Train Time Settings
After PatMax Finder is added, the UI will automatically enter train time settings.

Category Parameters Description

Train
Region

Train
Region

Editable region on image.

Train
Region
Shape

Select different options in the list for train region shape. The default option is affine rectangle.

122

Alignment

Category Parameters Description

Origin Origin Origin of train pattern. It can be either manually moved on image display or jogged using four
arrow buttons on Finder Setting panel.

Note: The output feature's LocationX and LocationY are determined by the origin of found
pattern on run time image, theta is determined by the angle difference from found pattern to
trained pattern.

Jogging
origin

Four arrow-shape buttons for user to jog the origin on image display.

Step for
each
jogging

Configure the number of pixels a jog moves

Center
Origin

Set the center point of train region as pattern origin.

Compute
Origin

Enable using two reference lines to compute their intersection as pattern origin.

Set origin After reference lines are manually placed and adjusted on image display, click this button to
compute two lines' intersection and set it as pattern origin. It is enabled only when Compute
Origin is checked.

Other
Parameters

Ignore
Polarity

Ignore the polarities of train time features.

All Settings Open PatMax tool editor for user to get access to all parameters in PatMax tool.

Train Train After all parameters are set, click this button to train pattern.

Compute Origin

In applications where PatMax Finder's output feature should report location of a specific point on a fiducial mark, Compute
Origin can be used to precisely locate the point. Here is an example: after Compute Origin is checked, two orange colored
reference lines will be available on image display. User then can manually align these two lines to two perpendicular edges
of the cross mark, thereafter click Set Origin button to let the finder compute the intersection of these two lines and set the
result point as pattern origin.

Run Time Settings
After pattern training, the Finder Setting panel moves next to run time settings.

123

Alignment

Category Item Description

Trained
Pattern
Origin

Flip Flip trained pattern

Rotate Rotate trained pattern

Refine
Nominals

Change the size of trained pattern

Untrain Untrain the pattern, by clicking this button the HMI will roll back to train time settings

Run Time
Parameters

Angle Specifies the rotation range for pattern searching, the default angle values are from -20 to 20
degrees

Scale Specifies the scale range for pattern searching, the default value is 1 without tolerance

Accept
threshold

Coarse finding accept threshold. PatMax uses two steps for pattern finding: coarse finding and
fine finding. Patterns found during coarse finding will be selected as candidates for fine finding
only when their coarse scores exceeds this threshold.

Contrast
Threshold

Minimum acceptable contrast for a pattern instance. Only pattern instances where the average
difference in pixel values across all feature boundaries exceeds the contrast threshold are
considered by PMAlign

Search
region

Search
region

Enable/disable editing search region. When it's disabled, PatMax finder uses the entire image as
search region.

Other
Parameters

Enable a
Reference
Part

Disabled: Current PatMax Finder will be used for both golden pose training and run time feature
finding
Enabled: Current PatMax Finder will only be used for golden pose training(reference mode). Run
time feature finding requires another finder.

Expand
PatMax
Editor

Open PatMax tool editor for user to get access to all parameters in the PatMax tool

Refine Nominals button enables users to edit the scale of trained pattern. When the trained pattern and run time patterns
have a constant scale difference, rescaling the trained pattern to make its size the same as run time patterns will reduce
searching time for PatMax tool.

124

Alignment

Enable Fixture to Reference Part option means current finder is only used for golden pose training, not for run time feature
finding.

For more information about reference part, please refer to Use reference part's feature position in Golden Pose topic.

PatMax Pattern(Synthetic)
PatMax Pattern(Synthetic) is to train patterns which has regular geometrical shapes.

This finder offers rectangle, circle and triangle shapes for user’s immediate choice. As for other shapes such as cross,
manual drawing in Synthetic mode in advanced options of PatMax is needed.

125

Alignment

For more details about PatMax tool, please refer to PMAlign Edit Control in VisonPro documentation.

Run
After configuring all parameters, click "OK" button, and run PatMax Finder to check the result.

Corner Finder
Corner finder finds two edge lines around a corner and uses their intersection as the output point feature.

Add
Corner Finder is available in Point Features Finder HMI control. The steps to add it are:

1. Select one image

2. Click "New" button under Finders panel

3. Choose "Corner Finder". After this, a corner finder will be available for user to edit

126

Alignment

Setting
The setting steps of a Corner Finder are very similar with those of a Line Finder on page 135. The only difference is that
Corner Finder has two lines to find:

1. Align the two references lines to the two corner edges on image(s).

Click Refine Edges button to fine tune reference lines to real edges.

before refining edges after refining edges

2. Adjust search length and projection length to find edges properly.

The two edge find tools share the same search length and projection length.

3. Choose polarity

127

Alignment

Choose whether the edges are indicated by a dark to light transition, or light to dark transition, or any polarity along the
arrow directions. The two edge find tools share the same polarity parameter, therefore the two arrow directions should be
coordinated.

The following arrow directions will lead to an error unless “Any polarity” is chosen.

4. Adjust caliper number and ignore number

Number to ignore is the number of points that will be ignored in the fitting operation. Corner finder automatically filters out
the given number of outliers that are farthest from fitting lines. Setting this number as non-zero value is important when
pseudo edge points could impact line fitting results.

Number to ignore = 0 Number to ignore = 2

Run
After the settings, click "Ok" button, and then run the added corner finder to check the result following the steps shown below.

128

Alignment

Custom Toolblock Point Finder
Custom Toolblock Point Finder is point feature finder that allows user to customize how the point should be found.Line
Finder on page 135

Add
Custom Toolblock Point Finder is available in Point Features Finder HMI control. The steps to add it are:

1. Select one image

2. Click "New" button under the Finders panel

3. Choose "Custom Toolblock", then a custom toolblock point finder will be available for user to edit.

Setting
Settings of this finder are all contained in its custom toolblock. Follow the steps to open the toolblock: 1) select the finder, 2)
click “Edit” button, 3) choose “Edit custom toolblock settings”.

129

Alignment

However, the input image of this toolblock is initially null because the finder has not been run yet. To get input image, click
“Ok” button, run the current finder once in Finder panel, and open the toolblock again. Then, the toolblock is ready for user to
customize.

Inputs
Parameters Type Description

Cam0Image0/Cam1Image1 Cognex.VisionPro.ICogImage Input image(s) from corresponding camera(s)

InReferecePart Boolean A input pin for user to decide whether and how to use it for
golden pose training using reference part

User Data Cognex.VisionPro.CogDictionary Contains a CogDictionary with user specified data.

Outputs
Name Type Description

LocationX Double The X coordinate of the found feature. This value is undefined if IsFound = false.
LocationY Double The Y coordinate of the found feature. This value is undefined if IsFound = false.

RotationX Double The angle of the X Axis of the found feature(in radian). This value is undefined if IsFound =
false and is valid only if found by a PatMax tool.

RotationY Double The angle of the Y Axis of the found feature(in radian). This value is undefined if IsFound =
false and is valid only if found by a PatMax tool.

IsLocationValid Boolean The flag to show whether a feature is found or not. Later will be used to decide whether or
not to use this feature to compute pose in A+ tasks.

UserData CogDictionary More data can be stored inside UserData as an output, this UserData is only accessible in
scripting.

130

Alignment

Editing
It is recommended to create an inner toolblock that contains all custom vision tools to keep the finder's toolblock neat.

Note: If it is one point alignment, then the part's rotation must be computed in the inner toolblock and passed to
RotationX and RotationY, so that the output feature will have x, y, and theta information for pose computation. The units
of RotationX and RotationY within the finder's toolblock are radians, the finder will later transfer them into degrees and
save them in a CogAlpsPointFeature object.

User has the flexibility to decide how the point should be found within the inner toolblock. However, few standard procedure
should be considered:

1. Run time error check

When toolblock has any run time error, its output pins keep their previous data. Which means if IsValid was
previously true, it remains true even the inner toolblock has exceptions. Following that, AlignPlus pose computer will
take current point as a valid feature and use it for pose computing without knowing feature finding is actually failed.

To avoid this problem, some scripts need to be added in inner toolblock to check run time error and update IsValid
output pin.

131

Alignment

After applying the script, the IsValid pin will be false if there is any run time errors within the inner toolblock.

132

Alignment

2. Space selection

In the example above, CogFindCornerTool's output results are based on image's selected space, but its search
region follows CogFixtureTool's Fixture space. For more information on how and why to configure in this way, please
refer to Use Different Space for ROI and Returned Result in Space Selection on page 362.

133

Alignment

3. Use different fixture names for each finder

Under one Point Features Finder, there might be multiple Custom Toolblock finders. If all of them are using
CogFixtureTool whose default output space names are all "Fixture", there will be a name space confliction, and result

in Finder failure .

To solve this confliction, user can give different fixture space names for every CogFixtureTools used in current Point
Features Finder.

Run
After finish customizing the tool block, click "Ok" button and run the finder to check the result.

Line Features Finder
This UI controller allows the configuration of multiple line feature finders (for example, line finders). When executed in a
sequence, this block behind runs the configured finders on its input images and outputs a list of the found lines and
graphics.

Line Features Finder UI consists of four areas: Images, Main Display, Finders, and Details.

134

Alignment

Images
This area lists out all available images for feature finding. The number of images is the same with the image input pins of
bonded Line Feature Finder block inside the program. Images are visible on this UI only when there are valid images fed
into that block. If not, this area appears as blank and no further operations can be done.

Main Display
By clicking one of the images, the main display area will show the selected image in larger scale.

Finders
The finder area maintains all finders that are used to find features. If a finder locates feature using only one input image, that
finder should be added under the corresponding camera icon. Otherwise, it should be added under “Multi Camera Finders”
category.

There are several buttons allow user to create/edit/modify finders.

l New: Create a new finder such as Line Finder on page 135, or Custom ToolBlock Line Finder on page 138

l Edit: Edit the selected finder(rename, copy, delete or edit)

l Run: Run the selected finder for user to check the result.

l Features: Rename features found by finders. This function can also be used to pair features. For example, in
assembly applications where Paired Features mode is used, features between two parts need to be paired using the
same feature names.

Details
Details area is used to set parameters for selected finder.

Line Finder
A line finder, represented by a VisionPro CogFindLineTool tool. This tool is set up to find a line feature on a single selected
camera image.

Add
Line Finder is available in Line Features Finder HMI control. The steps to add it are:

1. Select one image

2. Click "New" button under the Finders panel

3. Choose "Line Finder", then a line finder will be available under the selected image for user to edit.

Setting
To enter edit mode, first select the finder, then choose Edit finder settings under "Edit" button.

135

Alignment

Here are steps to set it up:

1. Align the reference line to the target edge.

Click Refine Edges button to automatically fine tune the reference line to real edge.

before refining edges After refining edges

2. Adjust search length and projection length.

Line finer only finds edge points within its search length. Therefore, to cover run time part location variances, it is
recommended to make the search length long enough during setup time. A easy way to adjust search length is to drag and
drop the cross mark on CogFindLineTool interactive graphic.

136

Alignment

Projection Length is the width of calipers. The selection of proper width is based on the length of expected edge and the
evenness if it. Here are two extreme cases:

l Calipers are too thin to resist noise

l Calipers are too wide to have enough number of calipers

Projection Length can also be adjusted by dragging and dropping the cross mark on CogFindLineTool interactive graphic.

3. Choose polarity

Choose whether the edge is indicated by a dark to light transition, or light to dark transition, or any polarity along the arrow
direction. In the image below, polarity can be set as "Light to Dark" or "Any Polarity" . However, "Light to Dark" is better than
"Any Polarity" because it resists more noises.

4. Adjust caliper number and ignore number

Number to ignore is the number of points that will be ignored in the fitting operation. Line finder automatically filters out the
given number of outliers that are farthest from the fitting line. Setting this number as non-zero value is important when
pseudo edge points could impact line fitting result.

137

Alignment

Number to ignore = 0 Number to ignore = 2

Note: Even the current setup image does not have any noise, it's still recommended to set ignore number to 2-3 in case
there could be noises in run time.

Run
After the settings, click "Ok" button, and then run the added line finder to check the result following the steps shown below.

Custom ToolBlock Line Finder
Custom Toolblock Line Finder is line feature finder that allows user to customize how the line should be found through Line
Finder on page 135

Add
Custom Toolblock Line Finder is available in Line Features Finder HMI control. The way to add it is first select a image;
second, click the "New" button under Finders panel; and last, choose "Custom Toolblock".

138

Alignment

Setting
All settings of this finder are contained in the custom toolblock. Follow the steps to open the toolblock: 1) select the finder, 2)
click “Edit” button, 3) choose “Edit custom toolblock settings”.

However, the input image of the toolblock is initially null because this Finder has not been run yet.

To get input image, click “Ok” button, run the current finder once in Finder panel, and open the toolblock again. Then, the
toolblock is ready for user to customize.

Inputs
Parameters Type Description

Cam0Image0/Cam1Image1 Cognex.VisionPro.ICogImage Input image(s) from corresponding camera(s)

139

Alignment

Parameters Type Description
InReferecePart Boolean A input pin for user to decide whether and how to use it for

golden pose training using reference part

User Data Cognex.VisionPro.CogDictionary Contains a CogDictionary with user specified data.

Outputs
Parameter Type Description

LineSegment Cognex.VisionPro.CogLineSegment The found line segment.

UserData Cognex.VisionPro.CogDictionary Specifies extra data that user wants to output, can be left as null

IsLocationValid Boolean Specifies whether the line feature is successfully found.

Editing
Custom Tool Block Line Finder does nothing unless user configure vision tasks within it. User can directly add tools here or
add an inner tool block first and then edit tools within it. The latter is recommended as it keeps the outside toolblock neat.

1. Within the inner tool block, add inputs and outputs

CogLineSegment type is under "Cognex.VisionPro" namespace within "Cognex.VisionPro.Core" assembly. Therefore, users
can follow the following steps to add "LineSegment" ouput.

Add another output pin "IsValid" as a Boolean.

2. Link inner and out tool block input and output pins.

140

Alignment

3. Editing inner tool block

User can design inside how the target line should be found. Here is one example of it.

1) Add CogPMAlignTool tool to locate the part

PatMax tool here helps locate the part and guide CogFindLineTool to search specific ROI on the part in run time.

2) Add CogFixtureTool to create a fixture space

CogFixtureTool creates a new fixture space based on part's current location.

3) Add CogLineFinderTool to find a line

There is one detail to be considered: If CogLineFinderTool directly use the output image from CogFixtureTool, then the
LineSegment result will be based on fixture space, not Home2D space.

To output Home2D space result as expected, CogLineFinderTool needs to get input image from the source image (whose
selected space is Home2D) of the toolblock, and change its ROI region to use the fixture space generated by the
CogFixtureTool. This operation will make sure CogLineFinderTool track the run time part and output result in Home2D.

141

Alignment

4. Add script code inside inner tool block to check whether inner tool block runs successfully.

5. Test inside inner tool block to see if "IsValid" output reflects the ok/ng result correctly.

Note: When there are more than one CogFixtureTools used in a Line Features finder, these CogFixtureTools' output
spaces should be renamed differently to avoid space confliction. See more information about it in Editing in Custom
Toolblock Point Finder on page 129.

Run
After setting up the tool block, click "Ok" button and run finder to check the result.

Generic Features Finder
Generic Features Finder UI is the interactive HMI element of Generic Features Finder tool block. It allows user to configure
multiple generic feature finders. When executed in a sequence, the block behind runs the configured finders on its input
images and outputs a list of the generic features and graphics.

142

Alignment

Settings
Point Features Finder UI consist of four areas: Images, Main Display, Finders, and Details.

Images
This area lists out all available images for feature finding. The number of images is the same with the image input pins of
bonded Generic Feature Finder block inside the program. Images are visible on this UI only when there are valid images fed
into the feature finder block. If not, this area appears as blank and no further operations can be done.

Main Display
By clicking one of the images, the main display area will show the selected image in larger scale.

Finders
The finder area maintains all finders that are used to find features. If a finder locates feature using only one input image, that
finder should be added under the corresponding camera icon. Otherwise, it should be added under “Multi Camera Finders”
category.

There are several buttons allow user to create/edit/modify finders.

l New: Create a new Custom ToolBlock Generic Finder on page 143

l Edit: Edit the selected finder(rename, copy, delete or edit)

l Run: Run the selected finder for user to check the result.

l Features: Rename features found by finders. Feature names are the same with their finder names by default.
However, users can rename to make them more meaningful.

Details
Details area is used to set parameters for selected finder.

Custom ToolBlock Generic Finder
Custom ToolBlock Generic Finder is a finder that allows user to find a generic feature using custom tool block. A generic
features is a System.Object which can be of any .NET type. It provides the user the flexibility to locate any type of feature
such as lines, angles, fiducials etc. Here is an example to show how to set a point and a line segment as one generic feature
in custom toolblock.

Add
Custom Toolblock Line Finder is available in Generic Features Finder HMI control. The steps to add it are:

143

Alignment

1. Select one image

2. Click "New" button under the Finders panel

3. Choose "Custom Toolblock", then a custom toolblock generic finder will be available for user to edit.

Setting
Settings of this finder are all contained in its custom toolblock. Follow the steps to open the toolblock: 1) select the finder, 2)
click “Edit” button, 3) choose “Edit custom toolblock settings”.

However, the input image of this toolblock is initially null because the finder has not been run yet.

To get input image, click “Ok” button, run the current finder once in Finder panel, and open the toolblock again. Then, the
toolblock is ready for user to customize.

144

Alignment

Inputs
Parameters Type Description
Cam0Image0
/Cam1Image1

Cognex.VisionPro.ICogImage Input image(s) from corresponding camera(s)

InReferecePart Boolean A input pin for user to decide whether and how to use it for golden pose
training using reference part

User Data Cognex.VisionPro.CogDictionary Contains a CogDictionary with user specified data.

Outputs
Parameters Type Description

Feature Object The result generic feature.
IsLocationValid Boolean The flag to show whether a feature is found or not. Later will be used to decide whether or

not to use this feature to compute pose.
UserData CogDictionary More data can be stored inside UserData as an output, this UserData is only accessible in

scripting.

Editing
Custom Tool Block Generic Finder does nothing unless user configure vision tasks inside it. Users can directly add tools
here or add an inner tool block and edit tools within it. The latter is recommended as it will keep finder neat.

1. Within the internal tool block, add inputs and outputs

To contain a corner point and a line segment into one generic feature, user can use CogDictionary as the output type.

Add another output pin "IsValid" as a Boolean.

2. Link inner and out tool block input and output pins

145

Alignment

3. Editing inner tool block

User have the flexibility to design how the target line and point should be found, how the output generic feature should be
composed in this toolblock. Here is an example for reference:

1) Add CogPMAlignTool tool to locate the part.

The PatMax tool here helps locate the part and guide the following CogCornerFindTool to target specific ROI on part in run
time.

2) Add CogFixtureTool to create a fixture space.

CogFixtureTool creates a new fixture space based on part's current pose.

3) Add CogFindCornerTool to find two lines and one corner point.

CogFindCornerTool outputs only the corner point by default. To add an extra line segment output, right click the
CogFindCornerTool and select "add terminal", in the opened dialog select the target line segment and then click "Add
Output".

Link CogCornerFinderTool's input image to the source image (whose selected space is Home2D) of this toolblock, and
change CogCornerFinderTool's ROI regions to use the fixture space generated by the CogFixtureTool. This will make sure
CogCornerFinderTool track the run time part and output results in Home2D.

146

Alignment

I

4. Add Scripting inside inner tool block to contain the point and the line segment into a CogDictionary output and check
whether tool block runs successfully

5. Test inside inner tool block to see if "IsValid" output reflects the ok/ng result correctly.

Note: When there are more than one CogFixtureTools used in a Generic Features finder, these CogFixtureTools' output
spaces should be renamed differently to avoid space confliction. See more information about it in Editing in Custom
Toolblock Point Finder on page 129.

Run
After setting up the tool block, click "Ok" button and run the finder to see result.

147

Alignment

Multi-Part Features Finder
Multi-Part Features Finder locates multiple parts of the same type on a tray. It receives one image of multiple parts on a tray
from a camera, locates these parts by searching them in all user-defined sub-regions, and outputs all found parts' feature
lists. The output feature lists will be used for Multi-part alignment computation to guide a gripper to pick these parts in correct
poses (Align to Pick), or to guide a stage to align these parts to their golden poses one by one for mechanical operating such
as gluing (Align to Base).

Multi-Part Features Finder is generated if the feature type was selected as "Multiple Part" in the corresponding finder in the
Configuration Wizard. The finder's configuration HMI is under Alignment category in the setup mode of the application .

148

Alignment

It takes two steps to configure a multiple-part finder: 1) Sub region configuration, 2) Vision tool setting. Sub region
configuration is to configure search region for each pocket of the tray (functions available on MulRegionSetting sub-page).
Vision tool setting is to set vision tools to locate parts in all sub regions (functions available on ToolBlockSetting sub-page).

MulRegionSetting
MulRegionSetting page allows users to generate default sub regions out of a grid, edit the generated sub regions, configure
parts' directions in all sub regions, and add offsets for each sub region so that the gripper can pick every part accurately.

Here are steps to set up sub regions:

Generates Sub Regions

One can generate multiple sub regions by dividing a overall search region by several rows and columns.

1. Adjust the location and size of the blue rectangle on the image to confirm the overall search region (Step 1)

2. Input column and row numbers of the grid (Step 2 and 3)

3. Select the starting corner and indexing direction for sub regions (Step 4 and 5)

149

Alignment

4. Click "Preview" button to check the sub region division result (Step 6)

Configure Sub Regions

This step allows users to fine tune sub regions sizes and locations, set parts directions, and configure which part should be
used for golden pose training.

1. Manually adjust sub regions' sizes and locations if needed

2. Choose one part as master part to train golden pose

3. Check if all other parts' directions are the same with master part's. If they are the opposite, click "Rotate" button to
rotate them 180 degrees.

After rotating, the color of the index label will be changed from green to purple, the "+" sign within the label will also
be changed to "-". The configuration of parts directions helps vision tool to minimize the search angle range for all
parts during run time feature finding so as to save processing time.

150

Alignment

Add or Delete Sub Regions

l If there is any extra sub region needs to be added, click the "Add" button to add and then edit it

l If a sub region needs to be removed, select it first and then click the "Delete" button .

Offsets Sub Regions

Gripper's translation or rotation performance could be slightly different over different sub regions, these differences may lead
to non-negligible errors during parts pickup. To make sure the gripper pick each part at a fixed relative pose one established
during a training step, users can input offsets to each sub region to compensate these differences. These offsets can be
manually calculated by engineers using results of several alignment tests.

Apply

After all sub regions' configurations are done, click "Apply" button to confirm.

ToolBlockSetting
ToolBlockSetting allows users to customize vision tools for all sub regions. Since all parts are of the same type, the user only
needs to configure vision tools in one sub region during the setup, then the finder will automatically search parts in all sub
regions during run time.

ToolBlockSetting page already has a default custom toolblock loaded to minimize users' work. This toolblock locates and
inspects the part within an input sub region. The inputs and outputs of the toolblock are as below:

151

Alignment

Inputs
Name Type Description

InputImage Cognex.VisionPro.ICogImage Input image of the current feature finder

SubIndex Integer The index of current sub region

SubRegion Cognex.VisionPro.CogRectangleAffine Current sub region

UserData Cognex.VisionPro.CogDictionary Input UserData of the current feature finder

Outputs
Name Type Description

LocationX Double X element of the pose of the found part within current sub region; if the part is not found, this value will
be 999999.

LocationY Double Y element of the pose of the found part within current sub region; if the part is not found, this value will
be 999999.

Rotation Double Theta element of the pose of the found part within current sub region; if the part is not found, this value
will be 999999.

Status Integer Whether the part is found within the current sub region
1: found
0: not found

Tools
The default toolblock has two parts: Point Finder and Inspection.

Point Finder
Point Finder is used to locate part within a sub region. By default it uses a CogPMAlignTool to find a part. However, users
can replace it with other tools according to the requirements of the application.

The values of output pins of Point Finder toolblock was given by scripting as below. Users do not need to modify it if
CogPMAlignTool is used for part locating.

152

Alignment

Inspections
Inspections allows users to customize inspection for each sub region, such as presence check, code reading, etc.

153

Alignment

Its inputs are as below:

Name Type Description
InputImage Cognex.VisionPro.ICogImage Input image of the current feature finder

SubIndex Integer The index of current sub region

SubRegion Cognex.VisionPro.CogRectangleAffine Current sub region

IsLocationValid Boolean Indicates whether the part was found in the previous PointFinder
toolblock

The output of Inspection toolblock is an Boolean object which only indicates whether the Point Finder and Inspection results
are both successful for the current sub region. However, it now only indicates the Point Finder result as the Inspection
toolblock is empty inside by default. The script below shows where the value of iStatus output should be updated after
specific tools were added by user in the Inspection toolblock.

Golden Pose Training
After the multi-part features finder is configured, click the corresponding "TA" command button on the Manual Button Control
in manual mode to train the golden pose. Only the master part is trained as the golden pose, other parts will share the same
golden pose during alignment pose computation. If it is "Align To Gripper" type of alignment, "TT" command should also be
sent to the vision system to register motion device's pose during train time.

Recipe Saving
After the multi-part features finder has been configured and golden pose has been trained, save the corresponding
Alignment recipe.

154

Alignment

Run
During run time, the multi-part features finder searches parts in all sub regions and returns each sub region's found status,
part's locations if they are found. On the image display, if a part is found within a sub region, it will be labeled in green (the
master part's region will be marked as orange), otherwise in red.

Multiple Features
Features finder allows user to find multiple features under one image, also allows to find one feature using multiple finders.

Multiple Features Under One Image
If there are multiple features to be found in one image, user can add multiple finders under that image, each finder finds one
feature.

155

Alignment

By default, feature's name is the same with its finder's name, such as "Finder00", "Finder01". Since their names are unique
under a features finder, these features are considered as different features.

All the features found in a features finder, regardless of their sources of camera, will be used for pose computing.

One Feature with Multiple Finder
In applications where the main fiducial mark is contaminated and could not be found by finder, customer usually wants to
find another fiducial mark to locate the part. However, to make no difference to pose computation, the second finder should
report the same location point of the part as of the first finder. That is to say, to find the same feature point using different
finders.

Here is an example of using two finders to find one feature:

1. Add the first finder to find the first fiducial mark, put its output feature location at some obvious place on part such as the
intersection of two edge lines on mark.

156

Alignment

2. Add the second finder to find the second fiducial mark. Manually move its output feature location to the same place as
configured in the first finder.

157

Alignment

3. Click Features button, input the same name for Finder00 and Finder01's output features, and click OK.

In AlignPlus, features with the same name are considered as the same feature, only the feature with highest score will be
used for pose computing. In this way, whether only one feature is found, or both are found will not affect pose computation
result. It's the same case if there are multiple finders.

CAUTION: Moving output origin far away from its found pattern/features may bring down the accuracy of feature
finding. User need to consider whether this impact to alignment/assembly result is acceptable or not.

Custom Multi Camera ToolBlock Finder
Custom Mulit Camera Toolblock finder can be used when the result feature should be computed based on images from
multiple cameras. This topic introduces how to use Custom Multi Camera Toolblock finer using an example of computing a
point feature based on three images.

158

Alignment

In this example, three cameras are looking at one part: two are focusing at corners on one side, and one focusing on a circle
on the other side.

Based on customer's requirement, the feature result is a single point feature whose x and y are same with the circle center's,
rotation is the angle of fitted line of the two corner points.

Since the final feature is a point feature, the feature type of finder component should be set as "Point" in the Configuration
Wizard.

In the generated program, after calibration and acquiring three run time images of the part in run mode, users can start
configuring Custom Multi Camera ToolBlock Finder:

1. In the "Finders" panel, one can find "Multi Camera Finders" category where custom multi camera toolblock should be
added.

l New: Select "Multi Camera Finders" and then click "New" button, in the opened drop-down list, choose
"Custom MulitCam Toolblock"

l Run: Select the added tool block, and then click "Run" button to run it once to get the input images

159

Alignment

l Edit: Click "Edit" button and select "Edit multi-cam custom toolblock settings" to enter edit mode

160

Alignment

2. In the setting page of the Multi Camera Custom Toolblock, add an inner ToolBlock, create its inputs and outputs, and
link them as shown below.

3. Within the inner toolblock, add three sub toolblocks to find two corner points and one circle center respectively. For
more information about how to find corners or circle in toolblock, please refer to Custom Toolblock Point Finder on
page 129.

4. In added inner toolblock's scripts (C# simple script), input the following code to compute the result feature's x, y, and
theta.

161

Alignment

Note: Similar with custom toolblock point finder, the units of RotationX and RotationY here are radian, AlignPlus
program will later transfer them into degrees and save them in a CogAlpsPointFeature object.

Here is the result of feature finding and align result using the result from the Custom Multi Camera Toolblock.

AOI Feature Extraction
Feature extraction is the prerequisite to run inspection. AlignPlus4.3 inspection function supports measurements between
pairs of following feature types:

162

Alignment

l CogLineSegment

A CogLineSegment object can indicate the location of an edge on a part. It is often used to measure gaps between
two edges or distances between points and edges. A CogLineSegment feature can be output by an AOI Features
Finder (equal to Generic Features Finder on page 142) using a
CogFindLineTool/CogCaliperTool/CogFindCornerTool inside the finder.

l CogTransform2DLinear

A CogTransform2DLinear object can indicate a part's x, y, theta (specified by properties: TranslationX, TranslationY,
and Rotation respectively) in selected space; if the theta element is not useful for measurement,
CogTransform2DLinear can also be used as a point containing x and y values in its TranslationX and TranslationY
properties. A CogTransform2DLinear object can be one output of an AOI Features Finder using a
CogPMAlignTool/other tools inside the finder.

Example of AOI Feature Extraction
The example below shows how to extract AOI features using an AOI Features Finder.

In the assembled part shown below, the following items needs to be measured:

1. Corner Distance: distance between P1 (corner point of transparent adhesive film) and P2 (corner point of dark
polarizer)

2. Top Gap: distance between L1 (top line of the film) and L2 (top line of the polarizer)

3. Width of polarizer: distance between P2 (corner point of dark polarizer) and L3 (right line of polarizer)

In the vision system, two cameras are looking at each corner of the assembled part. For Cam0, two point needs to be
extracted: P1 and P2. For Cam1, three line segments need to be extracted. In the Configuration Wizard, "AOI Features" type
should be selected in the finder component, so that after the application is generated, both points and lines can be extracted
from one features finder.

After calibration, the user can start configuring the features finder on HMI. Here is an example how the features finder should
be configured inside: two custom feature finders under Camera0 are added to find two corner points (P1 and P2), three
custom feature finders under Camera1 are added to find three edges of the assembled part (L1, L2, and L3).

Feature Extraction under the first Camera
For P1, the user can either choose CogPMAlignTool or CogFindCornerTool to find the corner point of the film within the
custom toolblock. In the example below, CogPMAlignTool is used and its GetPose() output is directly passed down as the

163

Alignment

feature output of current feature finder.

For P2, here CogFindCornerTool is used to find the corner point of the polarizer within the custom toolblock. However, since
CogFindCornerTool does not have output of a CogTransform2DLinear object, the user needs to add a
CogTransform2DLinear type of output manually to current custom tool block and give the corner's x, y values to this ouput's
TranslationX and TranslationY properites via scripting.

A CogTransform2DLinear type can be found under "Cognex.VisionPro" namespace from Cognex.VisionPro.Core.dll.

The script below created a new CogTransform2DLinear object first, then assigned the CornerX and CornerY ouputs of the
CogFinderTool to the object's TranslationX and TranslationY properites, and at last assign the object to the current
toolblock's output.

164

Alignment

Feature Extraction under the second Camera
For the three line segments extraction, one can use a CogFindLineTool within each custom toolblock finder to find the
desired edge and assign its line segment output as the output feature of that finder.

Result
The AOI features extraction results on run time images are shown as below in the image display.

Custom Pose Computation
Each alignment component in wizard configuration has one pose computation page on HMI for user to customize pose
computation. This page is configurable only when "Use Custom ToolBlock" is checked in alignment component during
wizard configuration. Custom pose computation allows user to custom pose compute method based on specific
requirements which cannot be achieved by other options.

Alignment Custom Pose Computation
Take AlignToBase application for example, check on "Use Custom ToolBlock" in alignment component to enable custom
pose computation.

165

Alignment

The corresponding pose computation page is as below.

The inputs include command of the alignment task, hand-eye calibration results, features from run time and train time and
their commands in which run time and train time stage poses are included, and user data if there is any user defined data.

Input Type Description
Command CommandArgs Current command for pose computer task

HECalibResults CogHandEyeCalibrationResults Contains a list of CogHandEyeCalibrationResult
objects, one for each camera.

TrainFeaturesData List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogGenericFeature>

The list of train time features from connected
feature finder

TrainFeaturesCommandData The last train time command used for connected
feature finder's image acquisition and feature
extraction

Features List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogGenericFeature>

The list of run time features from connected feature
finder

FeaturesCommand CommandArgs The last run time command to trigger connected
feature finder to run image acquisition and feature
extraction

UserData Dictionary User defined data

166

Alignment

The output is a linear transform from run time features to train time features in current selected space. And the
implementation of the pose computing should be done within CogToolBlock using tools or scripting.

Output Type Description
TrainFromRun CogTransform2DLinear The transform from run time features to train time features

Assembly Custom Pose Computation
Here is one example of assembly application using custom pose computation and its corresponding pose computation
page.

Since assembly uses pairs of features for pose computing, it has more inputs and outputs.

Manual Align Config
Manual Align Config allows operators to manually select feature locations on images in a pop-up window when run time
feature finding fails. It is located under Alignment category in setup mode. This function only supports point features and
only when there are more than two features.

167

Alignment

Settings
The Manual Align Configuration window shows all the point feature finders in the program. One can enable or disable
manual align function for specific finder, and set timeout value (in seconds) for user's operation. When the Run Time Edit
Window on page 168 is idled more than the timeout value, the window will be closed automatically with result of NG. Zero
means no timeout for the operation, the window will stay active until user take further action.

Run Time Edit Window
If the point feature finder is failed at run time and the its manual align function is enabled, the Feature Point Edit Window will
pop up for user to select feature location on image manually.

The picture below shown the feature finder has four point features. If the feature is found, a point edit tool in green will be
shown. Otherwise the point edit tool will be shown in red.

168

Alignment

Double click one of the display to switch to single display mode:

Function Description
Select Mode Select feature which needs manual align. Change of selected feature updates image display in single

display mode.

Free Point Manually align feature location using point tool for selected feature

Intersection Manually align two line segments to part's edges and use their intersection as feature location for selected
feature

Apply Apply manual align results to run time feature locations. Once the button is clicked, points are not editable.

Reset Reset the operations and switch back to edit mode.

OK Set all features as valid and found with current locations, exit the window to finish manual align. This
button is available only after changes are applied.

NG Keep failed features as failed and exit manual align. Select this option when the part is defective.

169

Alignment

Function Description
Jog the Free Point in selected finder up/down/left/right by input step. The unit of the input step is pixel.

Here is an example of using intersection as result point:

1. Double click the failed feature to enter single display mode.

2. Choose Intersection and align the two line segments to two edges of the part.

Note: The intersection tool assumes manual align of line segments are accurate and uses no vision tool to fine tune
them.

3. Click Apply button to calculate the intersection of two line segments and set it as the feature's location, and return back to
multiple image display to check if there is any remain missing features.

170

Alignment

4. Click OK to confirm the manual feature finding, or NG to disqualify the current part.

L-Check
L-Check subtask checks if the distance between pairs of features are within specification. It is located under Alignment
category in setup mode. L-Check function only supports distance check between point features, line features and generic
features are not supported.

Every features finders have an independent L-Check functions, they're arranged in different tab at the top of L-Check setting
page. Select one features finder first, then check Enable on/off to enable/disable its L-Check function. The Name besides
Enable check box indicates specific sub task in feature finding task which will be enabled or disabled.

171

Alignment

L-Check page mainly has four areas: Layout Graphic, Feature Points, Result Display and Measurements. Layout graphic
shows all run time features in current features finder and setting points which will be used for length check. Result Display
shows the graphics of L-Check in shared coordinate space. Measurements is the panel for user to edit length check points.

To start L-Check setting, click "Auto" button at the bottom of this page to let L-Check automatically generate setting points
and measurement points, and update the graphics.

Layout Graphic
Layout graphic window allows user to load a layout image of the part in format of JPG, JPEG, BMP, TIF or PNG with size
under 10 megabyte. This image helps user understand the layout of each feature point on part for convenience of
measurement points setting. This image should be drawn by user based on specific part type but not mandatory.

172

Alignment

Feature Points
Feature points displays and manages two sets of points: RunTime Points or Setting Points.

RunTime Points are current run time features of selected features finder. To make them available, the features finder needs
to run at least once.

Setting points are the candidate points for measurement. L-Check auto function will make a copy of all run time points and
set them as setting points. However, one can change the aliases of the setting points to make them more meaningful.

To preview the changes, click "Preview" button at the bottom right corner under Measurements panel to update the graphics
in result display.

173

Alignment

Measurements
Measurements allows user to add, enable/disable, or delete length check between point pairs.

Add
Click Add button to add one length check. Input its name in the pop-up dialog and click "OK".

Select feature points, input length nominal, upper and lower limits, and offset.

Parameter Description
Enable Enable or disable current length check.

Name Name of current length check.

Feature1/Feature2 The starting/ending feature points of current length check. Select them from drop list. The order of two
points doesn't matter as long as they're not identical.

Nominal Nominal value of current length

UpperLimit Upper limit of current length

LowerLimit Lower limit of current length

Offset Compensation to measured value

The criteria to judge a length check is:

l Pass: if LowerLimit ≤ (measured distance + offset) ≤ UpperLimit

l Fail: if (measured distance + offset) < LowerLimit or (measured distance + offset) > Upper Limit

174

Alignment

Enable
Disable one length check by checking off its Enable option.

Delete
Select one length check, and click Delete button.

Result Display
Result display shows all length check's feature points, nominal values, current values, and differences. Difference indicates
how the compensated length (measured result + offset) is different to nominal. If compensated length is within range, then
the graphics will be green, otherwise will be red.

When all measurement points are set, click "Preview" button to update the result graphics.

Reset
To clear setting points and measurement points, click "Reset" button.

175

Alignment

Apply and Save Recipe
When there are any unsaved changes, the "Apply" button is highlighted as " ". Click it and select "Yes" to save the
changes. After this, the "Apply" button will turn back to " ". Go to System/Product Recipe page to save current
Alignment sub recipe. Otherwise all the changes will be lost after the program is closed. For more information about recipe,
please refer to Product Recipe on page 185.

Run
If a feature finding task's L-Check function is enabled and configured, during run time, after the features are extracted, L-
Check will check the configured lengths of the part. If a length is out of specification, the Result Display will show it in red,
and the feature finding task will throw an exception; otherwise, If all length checks are passed, then their graphics will be
displayed in green, and no exception will be thrown.

AOI Setup
After the AOI features are extracted, users can set up the inspection items on the AOI Setup page located under "Alignment"
category in Setup mode of the application.

This page allows users to configure measurements between pairs of AOI features, and set tolerances for every
measurement results to check whether they are within required specs.

176

Alignment

The indexed items on the screenshot above are described in the table below.

Index Items Description
1 Save File Folder The folder where to save inspection result log files

2 Save File Name The name of the current inspection result log file

3 Run Test To trigger the inspection task to load AOI features and run the inspection

4 Add Add a measurement item or a tolerance check

5 Delete Delete a measurement item or a tolerance check

6 Apply Apply the changes to the measurement or tolerance configuration

7 Reset Revert changes back to previous saved configuration of measurement or tolerance setting

8 Advance Enable/Disable advanced options for tolerance setting

Measurement
Each measurement item has the following columns need to be configured:

Column Description
Enabled Enable/disable a measurement

Name The name of the measurement item

Measurement
Type

By default it supports the three types: PointLine, PointPoint, SegmentSegment

l PointLine: measure the distance from a point to a line segment

l PointPoint: measure the distance between two points

l SegmentSegment: measure the distance between two line segments. The result contains three
distances respectively from the two end points and one middle point of the first line segment to the
second line segment, represented by d1, d3, and d2

However, user can customize other measurement types and their inputs and outputs, and make them
available here for measurement options. See more information in Customize Measurement Types on
page 349.

Input1 The first feature input. Will be displayed in red if the feature is not found

Input2 The second feature input. Will be displayed in red if the feature is not found

Label
Rotation

The display angle of the measurement result label on image display. Default value is 0.

In the example below, P1 and P2 are two corner points extracted, L1, L2, and L3 are three line segments extracted. And the
measurement requirements are distances from: P1 to P2, L1 to L2, and P2 to L3.

177

Alignment

Here are steps to add the first measurement item (P1 to P2):

1. Click "RunTest" button at the upper right corner of this page to let the inspection task load the corresponding AOI
features

2. Click "Add" button under Measurement category

3. Input the name of the measurement item in the pop-up dialog (such as "CornerDistance"), and click "OK" to confirm

4. Change the measurement type to PointPoint

5. Select P1 from the point feature list of Input1

6. Select P2 from the list of Input2

7. Click "Apply" button at the upper right corner of the Measurement category

8. Click "RunTest" button again to update the measurement result.

For L1 to L2, P2 to L3 measurements, the steps are the same except for the different measurement types and their
corresponding input elements. Below is the result after all three measurement items were added:

Tolerance
A tolerance check setting has two modes for users to choose depending on their requirements for offset setting: simple mode
and advanced mode.

Simple Mode
In simple mode, each tolerance check has the following columns to be configured:

Column Description
Enabled Enable/disable a tolerance check

Name The name of the current tolerance check

178

Alignment

Column Description
Alias The alias of the tolerance check which will be displayed on the result panel of the Home page and the

corresponding image display. If it is not given, the Alias is the same with the Name.

Measurement
Source

Select the source of value which needs to be checked from all available results of measured items

Min Lower limit of the tolerance

Max Upper limit of the tolerance

Offset Offset to the raw value of the selected Measurement Source

Raw Value The value of the selected Measurement Source

Value Corrected value, equal to Factor*Raw Value + Offset (Factor is hidden in Advanced Options with the
default value of 1)

IsPassed True: Min ≤ Value ≤ Max
False: Value < Min or Value >Max

To check whether the three measured items above are within specs, the user can add tolerance checks for every items.

Take the CornerDistance for example, here are the steps to add a tolerance check for its result:

1. Click "Add" button to add a tolerance check

2. Input the name of the tolerance check (such as "CornerD") and click "OK" button to confirm

3. Select the corresponding measurement item's specific value, here is "CornerDistance.d"

4. Input the lower limit of the spec

5. Input the upper limit of the spec

6. Click "Apply" button to apply changes to the tolerance configuration

7. Click "Run Test" button to run the inspection task and check the result.

Here are the test results of the three added tolerance checks:

Advanced Mode
Advanced mode provides more information for users to compare the difference between an item's measured average value
and its nominal, and then decide on how to adjust the offset and factor to narrow down the difference. If a user does not need
the reference information to fine-tune offsets, he/she then can hide the advanced options by checking off the "Advance"
check box at the upper right corner of the Tolerance category.

Items Description
Factor Scale to the raw value

Nominal The nominal of the selected Measurement Source specified by part design

Average The average value of accumulated corrected values (corrected values = Factor * Raw Value + Offset)

Average Count The number of the accumulated corrected values which were used for averaging

Deviation Deviation = Average - Nominal

179

Alignment

In the example below, the averages are calculated based on 29 corrected values. If a user wants to recalculate the average
based only on new data, he can first select that tolerance check; second, click the "Reset Count" button at the end of the
selected line; third, click "Apply" button to confirm; fourth, run inspection again by clicking "Run Test" button or sending
inspection commands to the vision system. Then the average value will be recalculated based on newly accumulated data.

Results
The run time inspection results will be listed on result panel on the Home page of the application such as below. If a value
does not pass a tolerance check, that value will be displayed in red, otherwise in black.

To customize how many lines of history data to display on the result panel, users can open AlignmentSystem_
AutoModePage in edit mode, select the MeasurementHistoryControl on the page, and change its Maximum Item property
to the desired value.

180

Alignment

The measurement result graphics will also be displayed on the corresponding image displays. When a tolerance check is
passed, the graphics will be displayed in green, otherwise in red.

To view the measurement result between two cameras, users can right click "Fit Images and Graphics" on one image
display, then the measurement result label will show up in the middle of its two input features.

If a user has already configured the result log file name and its path, then after running inspection task for at least one time,
the measurement data and their tolerance settings can be found in the saved log file.

181

Alignment

182

Alignment

System

Alarms and Status
Alarms and status page shows tasks' running status and alarms. It can be found under System category in setup mode.

Status
When a certain task is running, its status light will be in green, otherwise will be in gray.

If you want to cancel the current running task, just select it fromWork Queue and then click Cancel Selected button at the
bottom. Or click Cancel All to cancel all running tasks.

Alarms
When there is any exception happening in the program, the title bar will flash between red and gray to remind user to check
the alarm. Check the Unacknowledged alarms listed at the top of alarms table to see what has caused the exception and
take actions accordingly. Once the exception is checked, click Acknowledge button at the button of alarms table to reset the

title bar status. This flash could also be reset by clicking " " icon on the title bar.

183

System

After the alarm is acknowledged, its status will turn to Inactive and stays in the alarm list as one record.

Message Viewer
Message viewer shows the system log in the main window. It can be found in System category in setup mode.

Message viewer helps user glance at all items and analyze the sequences in a larger window.

184

System

Click Clear button if you want to clear log in view table.

If there is any other extra message to be logged, you can use $LogData function in script inside the program to add it into the
system log.

The system log will be saved into a CSV file under the directory specified in Logging Setup on page 197.

Product Recipe
Product recipe manages all recipes in the master and sub recipe structure. It can be found in System category in setup
mode.

Master Recipe and Sub Recipe
Product recipe is the master recipe which maintains the name list of sub recipes. Product recipe does not save any other
specific data. Under each product, there are three sub recipes: acquisition recipe, calibration recipe and alignment recipe.
Here is the summary of the three sub recipes:

185

System

Sub
Recipe

Data Saved When to Save

Acquisition
recipe

All camera and lights settings, and
acquisition settings for each task

Every time camera or lights settings, or acquisition settings such as
camera IP address, exposure time, light intensity have been
changed, acquisition recipe needs to be saved again.

Calibration
recipe

All calibration settings and calibration
results.

Every time calibration settings(which may lead to some calibration
results invalid) are changed, or any station is recalibrated, calibration
recipe needs to be saved again.

Alignment
recipe

All feature finders and their trained
data, camera enable/disable status,
offsets setting, LCheck setting,
Placement Limit setting

Every time feature finder vision tools are reconfigured, feature finder
is retrained, camera changes its disable/enable status,
offsets/LCheck/Placement Limit setting changes, alignment recipe
needs to be saved again.

The benefit of the master-sub recipe structure is that once the product changes, you only need to change the product recipe
as all its sub recipes will be automatically changed altogether and you do not need to take time to distinguish which sub
recipe belongs to which product. Also, product recipes are indexed with product codes; these codes could be called by
external devices through communication which makes automatic recipe change possible, which saves model change time
and avoids manual mistakes in the factory.

The product recipe setting has three pages: Current Product Recipe, All Product Recipes and Orphan Sub-Recipes.

Current Product Recipe
This page is for the operations on the current product recipe.

Item Description
Current Product The name of the currently loaded product(master recipe)

Product Code The code number for the current product that can be used for automatic recipe change

Acquisition Recipe The name of acquisition sub recipe of the current product

Calibration Recipe The name of calibration sub recipe of the current product

Alignment Recipe The name of alignment sub recipe of the current product

Each sub recipe category has a drop-down list that shows all the available sub recipes and allows the current product to
have different sub recipes. All sub recipes have time stamp automatically attached when they were created so that it is more
convenient for you to identify them.

186

System

Save
When there is any change happening to any sub recipe, that sub recipe as well as the product recipe will have a yellow dot
appearing next to them. Clicking the "Save" button will save the change to its corresponding sub recipe and the current
product recipe.

If any of the sub-recipes are also shared by any other master recipe, a message window will pop up to inform what will be
impacted.

187

System

If the current recipe was not loaded properly, clicking the "Save" button will pop up a message window to confirm with you
whether you want to overwrite the one on the disk.

Save As
For each individual sub recipe, the Save As button allows the current state of the sub-recipe (Acquisition, Calibration or
Alignment) to be saved under a different name. This sub recipe's new name will be selected for the current product recipe.
This function can be used to backup recipes.

The fourth Save As at the bottom is to save the current product under a different name specified in the pop-up dialog, and
this new product name will be selected as the current product.

188

System

If Adopt New Product Name to Sub-Recipe is unchecked, the new product will share the sub-recipes with the current
product. If it is checked, the new product will create its own sub recipes that have the same names with the new product and
save all changes to them respectively.

CAUTION: When the Configuration Wizard reruns, the contents in "Default Product Recipe" will be cleared out. Please
save it as a different name before rerun the wizard.

New
Click New button to create a new product recipe as well as the sub recipes. This new product name will be selected as
current product. Note if any sub recipe with the given name already exists, the existing sub recipe will be used instead of
creating a brand new sub recipe.

All Product Recipes
This tab is for loading or deleting operation on the existing products.

189

System

Item Description
Product The drop down list shows all the available product recipes.

Acquisition Recipe The name of acquisition sub recipe of the selected product

Calibration Recipe The name of calibration sub recipe of the selected product

Alignment Recipe The name of alignment sub recipe of the selected product

Product Code The code number of the current product

If a sub recipe is shared between products, the information will be shown in a pop up control when mousing over the display.

Load
Loads the selected product as current product. If the current recipe or the sub recipes have unsaved changes, a message
window will pop up to allow the user to perform desired action.

190

System

Delete
Delete the selected product. Note that the corresponding sub recipes associated with the deleting product will not be
deleted. Use the "Orphan Sub-Recipes" tab to delete unwanted sub-recipes.

Orphan Sub-Recipes
This tab is for deleting operations on those orphan sub-recipes (the recipes are not referenced by any existing product). If
you want to delete them, just select them, and then click the "Delete" button.

Camera Simulator
Camera Simulator is a function that allows AlignPlus program to acquire images by reading image files from designated
local folders instead of acquiring from physical cameras when cameras are not available. This function can be found under
System category in setup mode.

To make camera simulator work, you need to assign specific folders and put images into these folders. There are two ways
to do it: simple mode and advanced mode.

Simple Mode
In simple mode, AlignPlus will automatically create all sub folders for each camera at each acquisition position once the root
directory is appointed. However, after that, it takes time to put correct images into each sub folder.

Here are the steps:

1. Enable camera simulator
Enable camera simulator by checking on Simulator Cameras at the upper left corner of this page.

191

System

Once the camera simulator is enabled, the background color of title bar will change from yellow to blue to remind user that
real cameras are not used for image acquisition. When is disabled, the background color will change back to yellow and the
application will acquire images from real cameras.

l Using cameras:

l Using camera simulator:

2. Select directory

Click " " icon and select one existing empty folder for Directory. If the selected directory is empty, the application will pop
up a dialog asking if you want sub directories to be created automatically. If click Yes, then the program will automatically
generate empty sub directories for all image acquisitions needed in this application.

The number of sub directories and their names are based on the wizard configuration. One sub directory is for one camera
at one acquisition position. In the example below, HECalib0 task will have two sub directories, one for Camera0Pos0,
another for Camera1Pos0. It is the same case with HECalib1: one for Camera2Pos0, another for Camera3Pos0.

192

System

As for CrossCalib, since it has four pins connected(two cameras at two positions), it will have four sub directories:
Camera0Pos0, Camera1Pos0, Camera0Pos1, Camera1Pos1. For Features0, it also requires four sub directories since it
also acquires images from two cameras at two positions. Features1 will have two sub directories similar as HECalib1.

Here are all the generated sub directories:

In most cases, one camera will only acquire one image at each position in feature finder task. However, if it is configured as
acquiring two images in the wizard configuration, then the corresponding sub directories will be doubled with different
exposure indexes, such as below:

3. Copy simulation Images into each sub directory
All these automatically generated sub directories are empty inside, we need to manually put images in to make the program
be able to read images from these directories. The supported image formats are: BMP, JPG, PNG and TIF.

These images should come from real cameras on a real machine in a real alignment or assembly application so that when
they are used in this new project, the calibration and feature finding will make sense. Otherwise, the calibration may fail
using some random calibration images. Or even if the calibration passes, the feature finding may still fail as the corrected
images out of the wrong calibration results are so distorted.

For hand-eye calibration sub directories, the image quantity and order for each camera should match with the loop settings
in the hand-eye calibration parameter.

Calibration Loop Corresponding Images

193

System

For other directories, images should be put in an order that every time when the application reads images from each
cameras' sub directories, the images are loaded in a way as if they were acquired of a real part from real cameras.

4. Confirm playback order
After putting all necessary images under each sub directory, come back to camera simulator page, and choose the playback
order from its drop-down list. The default option is Name(Ascending). You can also use Data if it describes the order better.
Random is not recommended as it will break the order how those images were acquired.

5. Rewind and Rescan
Click Rewind and Rescan button to let the application scan once for all images under each sub directory to register their
names and numbers so that when it is time to play back, the program knows which image to read.

Rewind and Rescan should be clicked every time there is any image quantity or name changes under any sub directory.
Otherwise, the program will assume the original images are still there and would continue to load them, which typically
results in an acquisition exception.

During hand-eye calibration, if any exception(such as no valid data matrix code is found) occurs in the middle which caused
the cancellation of the calibration, Rewind and Rescan should be clicked again after the exception is handled and before a
new hand-eye calibration process starts to make sure all images will be loaded from the beginning. Otherwise, the
application will continue to load the next images from the point where last hand-eye calibration is canceled, which will result
in calibration failure in the end.

Advanced Mode
When you have already created a bunch of sub folders and images for other projects, you may feel reluctant to copy those
images again one by one into new project's sub directories just because they have different sub directory names. Advanced
mode can help you on this.

194

System

In advanced mode, you re-navigate the path for each sub directory instead of copying images inside from directory to
directory. This may make sub directory names quite colorful, however it does not affect the new program to load images
correctly from each directory since it maintains a mapping between new directory names and default sub directory names.

Click the Advance button at the upper right corner to enter advanced mode. The setting page will change to as above: each
default sub directory will have one directory browser that you can assign a new path. In the example above, all hand-eye
calibration sub directories have been re-directed to some already existed image folders to avoid copying images around.

After all folders have been configured, double check playback order and then click Rewind and Rescan for the program to
register all the changes.

Run
After all settings are done either in simple mode or advanced mode, you are ready to run the program as if cameras were all
set.

Communication
Communication page provides the settings for TCP/IP configuration. It can be found in System category in Setup mode.

Change the port numbers for CommandsFromPLC device or ResultsToPLC device and click Reconfigure button. When the
ports are available, the corresponding status light on the right will turn green, otherwise will be red.

195

System

Disk Cleanup
Disk cleanup function helps clean up the files under a specific folder when the size of that folder is getting too large. It can be
found in System category in setup mode

Disk cleanup has many convenient settings that allow you to decide under what condition to clean and when to clean. It
even allows you to set timepoints to run the clean-up task according to your convenience, one common instance of which is
when the machine is not busy.

Item Description
Root Directory The root directory under which files will be cleaned up.

196

System

Item Description
Include Sub-
directories

l Unchecked: only files under the root directory will be cleaned up.

l Checked: all files under the root directory and its sub folders will be cleaned up.

File Type Filter The file types to be cleaned up: it could be images, text files, or both.

Cleanup Schedule Schedule specific timepoints of a day to run the clean-up task.

Interval Run clean-up at certain intervals.

Note: Clean-up will slow system down therefore it's not recommended to run it at a very short
intervals.

Cleanup Criteria l Record count greater than: run clean-up task when the root folder size is greater than the
given threshold.

l Record older than: run clean-up task when the files in it is older than given threshold.

l Disk space used greater than: run clean-up task when the disk space used is over the given
threshold.

l Free disk space less than: run clean-up task when the remaining disk space is less than the
given threshold.

After you set up all parameters, click Apply to save them.

Logging Setup
Logging setup pages specifies two types of log settings: System Logging and Alignment Logging. It can be found in System
category in setup mode.

System Logging
System Logging saves system logs that are shown at the button bar into .csv files. It covers commands received from
external devices, results sent out by vision, operator's actions, error message when exception happens, etc. A system log
includes DateTime, user name and control level, message type, message source and message content. The default
directory of the saved .csv file is "C:\ProgramData\Cognex\Log". The default file name is "<Date>_AlignPlus_Log".

197

System

It will split into different .csv files based on time span or file size to keep the files feasible to operate. The default time span is
24 hours, default size limit is 5 MB and you can also change them to meet your needs.

Alignment Result Logging
Alignment result log is also saved under the same directory of system log file with a different name: "<Date>_<Alignment
Name>_Log", for example "20200616_Alignment0_Log". Alignment Name here is the alignment task name, each
alignment task will have its own alignment log file. Those files will also be divided into different files based on time span and
file size.

Alignment result log content has two parts. The first part is the result x, y, theta values that vision sent back to motion device
including absolute and relative positions; the second part is result data of all features in run time and train time.

198

System

Name Description
TimestampUTC Time stamp when the log is written down

ErrorMsg Error message, empty when there is no error

AbsoluteStageMotionX X value of target position that motion device should move to

AbsoluteStageMotionY Y value of target position that motion device should move to

AbsoluteStageMotionThetaDegrees Theta value of target position that motion device should move to

RelativeStageMotionX X value of relative position that motion device should move

RelativeStageMotionY Y value of relative position that motion device should move

RelativeStageMotionThetaDegrees Theta value of relative position that motion device should move

The result data of each feature contains the following data:

Item Description

IsFound Indicates if the feature is found.

IsValid Indicates if the result of the finder is valid. If this is true then the X, Y and Score properties are
valid.
If MultipleFindersPerFeatureMode is true, IsValid can be true, but IsFound can be false.

FeatureLocationX The X coordinate of the found feature. This value is undefined if IsFound = false.

FeatureLocationY The Y coordinate of the found feature. This value is undefined if IsFound = false.

FeatureRotationXInDegrees The angle of the X Axis of the found feature. This value is undefined if IsFound = false and is
valid only if found by a PatMax tool.

FeatureRotationYInDegrees The angle of the Y Axis of the found feature. This value is undefined if IsFound = false and is
valid only if found by a PatMax tool.

CameraIndex The index of the camera containing the point feature finder and the feature location. The
value is -1 for multi camera custom feature finder.

Score Score of found feature. This value is only valid when PatMax Finder is used to find the feature

Screenshot Saving
Screenshot saving page configures the settings for screenshot images. It can be found in System category in setup mode.

Settings
The Settings tab configures the resolution of screen shot images, whether to save GUI or not, etc.

199

System

Item Description
Root Directory The root directory for all screenshot images to save

Capture enabled Obsolete

Annotated Image
Sources

Main GUI: The screen shot of main GUI will be saved
Image Record: The run time images together with result graphics will be saved
Both: Both screen shot of main GUI and images with result graphics will be saved

Resolution 1: Save images at its original resolution
1/2: Save images at its half resolution
1/4: Save one quarter the size of original resolution
Custom: Use customized size to save image

Save On OK: Save OK images
NG: Save NG images
When they are both checked on, the program will save both OK and NG images

Main GUI Delay(ms) Add delay time for main GUI screen shot to make sure all image displays have been updated
before being captured

Auto Capture Records
This tab configures which result images to save. For most cases, only feature finder tasks' FeatureExtractorSubTasks need to
be saved as they have the run time image results. The list below may be a bit complicated for you to choose, however, you
can set it in Image Saving on page 201 instead as Image Saving has clearer description about what screenshot images to
save.

200

System

Image Saving
Image saving function disables or enables raw image or screen shot saving. It can be found in System category.

Settings
The setting page is as below:

201

System

Item Description
Root Directory Root directory for raw image saving and screen shot saving.

Enable Disable or enable raw image saving and screens shot saving functions in selected task.

Task Name The task whose images are to be saved: every calibration, feature finder, motion analysis, and
alignment tasks can save images independently

Station Alignment component name in configuration wizard

Image Save
Option

l OK: only save OK images;

l NG: only save NG images:

l All: save both OK and NG images;

l Disable: not save any images (this function allows raw image saving and screen shot saving to
be disabled or enabled independently).

Screenshot Save
Option

l OK: only save OK images;

l NG: only save NG images:

l All: save both OK and NG images;

l Disable: not save any images (this function allows raw image saving and screen shot saving to
be disabled or enabled independently).

Sub Directories
All images would be saved under root directory but will be distributed into different sub directories depending on date,
alignment system, station name, etc. Here is the directory structure for calibrations and feature finders.

Calibration sub directories Feature finder sub directories

202

System

Here are the keywords used for sub directories:

Keyword Description
Root Directory Root directory specified in Image Saving HMI
Date Date in the format of "yyyyMMdd" when images are saved

AlignmentSytem Current alignment system

Calibration The calibration component name specified in configuration wizard, such as
"HECalib0", "CrossCalib"

Alignment The alignment component name specified in configuration wizard, such as
"Alignment0", "Alignment1"

OK The folder to save images into when calibration or feature finding result is OK

NG The folder to save images into when calibration or feature finding result is NG

Finder The feature finder component name specified in configuration wizard, such as
"Features0", "Features1"

SN Serial number of the part whose images are saved

Index Index which increases by 1 automatically every time there is one new raw image
from one camera is saved

TimeStamp Time in the format of "HHmmss.fff" when images are saved

Note that raw images and screen shots are saved under the same sub directory if they are both enabled to be saved.

Image Files
Images files are named using AcqName which is composed of two parts: camera name and position name, such as
Camera0Pos0, or Camera1Pos0. In the example below, all AcqNames are marked for calibrations and feature finders in
configuration wizard:

203

System

Raw Images
Raw images are saved in TIF files in the unit of acquisition position. For all cameras that acquire images at the same position
in one calibration or feature finding task, their raw images will be saved together into one TIF file whose name is a
combination of all AcqNames, such as "Camera0Pos0_Camera1Pos0.tif" or ""Camera0Pos1_Camera1Pos1.tif". If there are
four cameras acquiring images at the same time at one position, then the image file will be like "Camera0Pos0_
Camera1Pos0_Camera2Pos0_Camera3Pos0.tif". The TIF file will contain four images inside then.

Image Records
Image records are annotated images with result graphics. It is one of the screen shot image types. Image records are saved
in JPG file in the unit of AcqName. such as "Camera0Pos0.jpg", "Camera1Pos0.jpg". See more settings about image
records in Screenshot Saving on page 199.

Main GUI Screenshot
Main GUI saves screen shot of the main user interface. It is always named as "GUI.jpg". See more settings about main GUI
saving in Screenshot Saving on page 199.

Camera Status
Camera Status page shows whether a certain camera is connected or not. It can be found under System category.

When a camera is connected, its status light will be in green. Otherwise, in red.

204

System

Camera Center Parameters
In alignment applications, customers sometimes want to use camera centers as part features in when establishing the
golden pose for the part to keep golden pose consistent during model change (For more information about using camera
center as golden pose, please refer to Golden Pose on page 1). This can be done by setting Camera Center Parameters
page which is located under System category in Setup mode of the generated application.

The setting page consists of two areas: offset setting and image display. Offset setting allows users to input offsets(x, y, ϴ) to
each camera center at each camera acquisition position, and save these offset camera centers in Home2D space as feature
locations of the part in the golden pose. Image display shows the corresponding image at selected acquisition position and
marks its offset camera center using a yellow cross graphic.

Here are the steps to set up:

205

System

1. Select the alignment task which needs to use camera centers as golden pose

2. Enable "Align To Camera Center"

3. Select the space to input offsets

This function supports offset inputs in the any of the following three spaces, the user can choose one that is
convenient to measure.

Space Origin Unit

Raw2D Upper-left corner of the image pixel

Camera2D Center of the camera mm

Home2D Origin of Stage2D mm

4. Input offsets for each camera

The cross mark on image display will automatically change upon user's offset inputs.

5. Click "Apply" to confirm

Regardless the input space of the offsets, when "Apply" button is clicked, this function will convert these offsets into
Home2D values and generate the feature locations at golden pose for the alignment task. The user does not need to
run train time command to retrain the golden pose after this change.

206

System

6. Save alignment recipe

The golden pose generated from offset camera centers will be saved in a separate data without overwriting original
trained features. Therefore, user can switch between using train time features or offset camera centers as golden
pose when needed without retrain.

Note: This function is only available in alignment applications.

Offset Compensation
In alignment applications, run time part is aligned to its trained golden pose. However, the trained golden pose may not be at
the ideal pose for further mechanical operation such as dispensing, gluing. Therefore, even run time part is perfectly aligned
to its golden pose, the constant discrepancy between golden pose and the ideal target pose caused by mechanical
positioning should be compensated to achieve alignment goals.

Likewise, in assembly applications, even if features from both parts are precisely located, and motion device moves
accurately to target pose provided by the vision system, the gaps between them may not meet the specifications when the
two parts are actually assembled. These differences between actual gaps and ideal gaps are caused by other mechanical
process such as part transferring, or attachment. However, these differences are typically constant so that they can be
compensated.

Offset compensation function allows user to manually add offset values to run time part features, so that when motion device
moves to target pose provided by vision system, the desired alignment or assembly characteristics can be obtained. It
currently only support point features.

Offset compensation function can be found under System category in setup mode.

It provides three methods of compensation: XYTheta mode which compensates part feature locations based on X, Y, Theta
offsets, XXY or XYY mode which compensates based on three gaps measured between real part and its target position.

XYTheta Mode
In XYTheta mode, x offset is offset along stage's x axis, y offset is offset along stage's y axis, theta offset(Ө)'s direction is from
stage's x axis to its y axis. Those offsets could be calculated based on inspection results from inspection machine or
calculated by operator to bring run time part to its target pose. After receiving these offsets, this function will first apply the
theta offset by rotating all features around features' mean center. Second, compute all features' location changes caused by
theta offset. Third, add the x, y offsets to features' changed locations computed in the second step.

207

System

Here are the steps to add x, y, theta offsets:

1. Select one station

2. Enable that station's compensation function

3. Choose XYTheta mode

4. Input manually estimated X, Y, Theta offsets.

X, Y, Theta offsets should be based on current part coordinate. Theta is in degree.

5. Run feature finding and pose computer one time.

6. Click Apply button to apply the offsets.

After applying, one can find the current part's feature coordinates before and after compensation.

7. Save current recipe so that these offsets will be saved in the alignment sub recipe.

After the offsets are applied, you may find alignment or assembly result improved, but still a bit away from specifications. In
this case you may want to add some extra small offsets to the current ones. This can be done checking on Accumulate.

As marked above, New offsets = New Inputs + Current Offsets. Click Apply button to overwrite current offsets with new
offsets.

208

System

If by chance the newly added offsets make result drift further away, you can revert to the last offsets by clicking Rollback
button, or clear all offsets by clicking Reset button.

Compensate Based on Gaps
Another way to compensate theta of run time part is by inputting two symmetric gaps between run time features locations
and their corresponding target locations along one side of the part. If the gaps are equal, it indicates no theta compensation.
Otherwise, an angle should be computed based on the two gaps' difference and the distance between where the two gaps
are measured, and then compensated it back. When this side of part is along y axis of the stage, please choose XXY Mode.
Otherwise, choose XYY Mode.

XXY Mode
XXY Mode uses two gaps along x axis of the stage, one gap along y axis of the stage to compensate run time part feature
locations.

Item Data Type Description
X1 Signed Double First measurement point's x gap from its target position, or

how much the first point should move along x axis to its
target x position.

Note: The first measurement point is the point which
is closer to stage's origin compared with the second
point

X2 Signed Double Second measurement point's x gap from its target
position, or how much the second point should move
along x axis to its target x position.

Note: The second measurement point is symmetric
to the first point on the part and is farther away from
stage's origin

Y Signed Double The estimated Y offset of run time part after its theta has
been compensated

LY Unsigned Double Absolute value of Y direction difference between two
points where X1 and X2 are measured

209

System

The steps of adding XXY offsets are the same as those of adding XYTheta offsets. Only the inputs have been changed to X1,
X2, Y, and LY.

LY can either been manually inputted or automatically calculated by offset compensation function based on found run time
feature locations. Check on "Auto" to let the program calculate LY and LX(x difference between two measurement points,
should be 0 when there is no rotation issue, for reference only) automatically. The auto-calculated LY may be slightly
different with the y direction distance between two measurement points as the measurement points may not be feature
points. However, their difference is negligible because the mechanism of offset compensation is to compensate the part to
be one-step closer to its ideal pose each time for several times to avoid over-compensation.

After receiving these values, offset compensation will first compute theta offset based on X1, X2 and LY. Second, compute all
features' translation(x, y) changes resulted from rotating the part by theta around all features' mean center. Third, compute x
offset for each feature based on X1 or X2 depending on which side the feature is and its x changes caused by rotation.
Fourth, compute a common y offset for all features based on input Y and average y changes of all features caused by
rotation.

XYY Mode
XYY Mode uses one gap along x axis and two gaps along y axis of the stage to compensate run time part feature locations.

Input Data Type Description
X Signed

Double
The estimated X offset of run time part after its theta has been compensated

210

System

Input Data Type Description
Y1 Signed

Double
First measurement point's y gap from its target position, that is to say, how much the first point should
move along y axis to its target y position.

Note: The first measurement point is the point which is closer to stage's origin compared with the
second point

Y2 Signed
Double

Second measurement point's y gap from its target position, that is to say, how much the second point
should move along y axis to its target y position.

Note: The second measurement point is symmetric to the first point on the part and is farther away
from stage's origin

LX Unsigned
Double

Absolute value of Y direction difference between two points where Y1 and Y2 are measured

The steps of adding XYY offsets are the same with adding XXY offsets. Only the inputs have been changed to Y1, Y2, X, and
LX.

LX can also either be inputted manually or auto-calculated by this function using x difference of found feature locations. The
way to compute run time feature location changes is the same with the XXY mode, only replacing X1, X2 with Y1, Y2,
replacing LY with LX.

How to compensate multiple features
When there are more than 3 point features, it is recommended to measure the gaps along the long side of the part if XXY or
XYY mode is used.

211

System

When "Auto" is checked on, offset compensation under XYY/XXY mode will use x/y difference between two features along
the long side of the part as LX/LY.

However, if the mean center of all features is not expected to be rotation center of theta compensation, it is recommended to
use XYTheta mode only.

Placement Limit Checker
Alignment displacement limit check is a function to check whether output x, y and theta values provided by the pose
computer are within certain limits. If they are, then alignment check will be OK. Otherwise, it will be NG. This function can be
found in System category in setup mode.

212

System

Here are the steps to set placement limit:

1. Select the station that needs placement limit check.

2. Check on Enable option.

3. Select if upper and lower limits should be symmetrical or not.

4. Choose to input relative limits or absolute limits.

5. Input upper(Max) and lower(Min) limits for X, Y and Theta values.

If Symmetrical is checked on, then you only needs to input upper limits as lower limits will be generated
automatically.

6. Click Apply to save those limits.

7. Save the current alignment recipe.

Besides upper and lower limits, you can also specify default values when check result is NG so that external devices can
easily identify it is a NG case. The default NG values for X, Y, and Theta are 999.000, 999.000, and 0 respectively. If these
default values are what you need, check on Failure option first, and then you can edit them.

213

System

Also, specific error codes are assigned when limit check is NG. The error code will be forwarded to external device so that it
knows which specific value has failed the placement limit check. You can also edit these error codes here according to your
own needs.

After all changes are done, click Apply and save the alignment recipe again.

214

System

Program Workflow
In order to execute the various vision tasks in the vision application, command strings, whose format is defined in the
Communication Protocol document, can be sent over a TCP/IP channel to the vision application by the customer PLC.
Alternatively, other forms of communication can be used. However, the communication data should be converted into the
equivalent AlignPlus command string. The command string is sent to the script CommandHandler.

The CommandHandler script, which handles these commands, converts the command string into an equivalent
CommandArgs object that contains all the information and data needed to execute the target vision task. Execution of the
vision task and gathering the results of the execution is performed by a TaskScheduler component. Following execution, the
TaskScheduler executes its callback script which in turn calls the CommandHandlerCallback script. The
CommandHandlerCallback script converts the results of the vision task execution into an equivalent result string, as
documented in the Communication Protocol document. If an alternate form of communication is used, this string should be
converted into the equivalent PLC response and sent back to the PLC.

l For TCP/IP communication, the overall work flow is as below:

l For customized communication, the overall work flow is as below:

TCP/IP Communication Devices
To have the TCP/IP Devices automatically generated and functions implemented, enable the Create TCPIP Connection
option and set the proper port numbers for TCP/IP server and client in the configuration wizard during application
generation.

215

Program Workflow

Commands From PLC
CommandsFromPLC is an TCP/IP server device that can receive command string from external TCP clients and sends the
result string back to them after vision task finish running if task runs in synchronous mode. Once it receives a command
string, it will call its On Data Received callback script. You can find On Data Received script by right click the device, and
then choose it under Scripts.

The content of the On Data Received script is implemented by configuration wizard during application generation. It
performs the following functions:

1. Send command string to CommandHandler

216

Program Workflow

CommandHandler will first verify the format of command string, then it will generate a suitable CommandArgs object that is
used by the task scheduler to pass data to the task that has to be executed.

2. Send acknowledge string back to external devices.

When the task is to be run in synchronous mode, the acknowledge string which stored in reVal.Item1 will be sent back via
CommandsFromPLC chanenel.

When the task is to be run in asynchronous mode, the acknowledge string which stored in reVal.Item2 will be sent back
via ResultsToPLC channel.

Results To PLC
ResultsToPLC is also an automatically generated TCP/IP server device. It is responsible for sending acknowledge string
and result string back to external device when the vision task is run in asynchronous mode.

Methods implemented by the ResultsToPLC device is called at two places in application:

1. OnDataReceived script of CommandsFromPLC device before command is run.

Acknowledge string will be send back to external device when asynchronous command is called.

2. AcknowledgeTaskResults callback script of TaskScheduler after the task execution is completed.

Result string will be sent back to external device when asynchronous command is called.

Customized Communication Devices
Custom communication devices can be employed using the scripting functionality available in Designer, or by creating a
Designer plugins that generates Designer components. Here is an example of a ModBus device implemented as a Designer
device:

217

Program Workflow

For more information about designer plugin development, please refer to Cognex Designer User Manual \ How To... \ How
To... Plugins.

CommandHandler
CommandHandler is an automatically generated script that can be found in the folder Scripting\User Scripts\Misc. It is the
command call center in program. For almost all applications, it is expected that this file would not modified, It has been
documented for completeness.

CommandHandler performs the following functions:

1. Check the command format and send back a suitable acknowledgement string to either CommandsFromPLC or
ResultsToPLC device.

The CommandHandler script attempts to decode the command. If the format of the command is incorrect, it returns a suitable
error code back to the PLC.

2. When the format is correct, it generates a suitably initialized CommandArgs object and send it to Task Scheduler.

In CommandHandler, information like task's StepID, task name, the behavior of task(Acquire, Process or both), as well as
other information such as position index, x, y, theta of stage are extracted and decoded from command string and stored in
one or more CommandArgs object(s) as a list. The list is sent to Task Scheduler that executes the appropriate task.

218

Program Workflow

Task Scheduler
Task Scheduler is a Designer Component which is automatically generated by configuration wizard. This component
maintains a list of task names and the corresponding system paths.

Task Scheduler is responsible for passing all the relevant data to a task and execute it. It is also responsible for gathering
the results generated by the tasks.

Task Scheduler implements a set of methods. These methods allow the execution of tasks in at least three different ways:

l Synchronously

When a task is executed synchronously, the task scheduler method which executes the task does not return until the
task has finished execution. Typically the task executes in the same thread as the one that initiated the execution.

l Asynchronously

When a task is executed asynchronously, the task scheduler starts the execution of the task in a different thread and
returns. The scheduler does not wait for the execution of the task to complete.

l Sequentially

When a task scheduler runs sequentially, it runs more than one task.

After the requested task or tasks finish running, Task Scheduler's callback function AcknowledgeTaskResults will be
triggered, wherein CommandHandlerCallback script will be called. The callback is called even if the task execution was
unsuccessful.

CommandHandlerCallback
CommandHandlerCallback script can be found in the folder Scripting\User Scripts\Misc.

219

Program Workflow

It is responsible for the following actions:

1. Converting results into a result string.

For example, if a command to align parts is sent, this script extracts result data such as target x, y, theta for motion
device and converts them to a result string.

Some of the data that the result string can contain are:

Key Type Description

X Object X value of current position of motion device, only used for vision-
guided hand-eye calibration or ultracalibration

Y Object Y value of current position of motion device, only used for vision-
guided hand-eye calibration or ultracalibration

ThetaInDegrees Object Theta value of current position of motion device, only used for vision-
guided hand-eye calibration or ultracalibration

AbsoluteStageMotionX Object X value of target position of motion device should move to

AbsoluteStageMotionY Object Y value of target position of motion device should move to

AbsoluteStageMotionThetaDegrees Object Theta value of target position of motion device should move to

RelativeStageMotionX Object X value of relative position of motion device should move

RelativeStageMotionY Object Y value of relative position of motion device should move

RelativeStageMotionThetaDegrees Object Theta value of relative position of motion device should move

IsOK Object Specifies whether alignment result is within limit

PoseValid Object Whether current position is valid or not, used only for vision guided
hand-eye calibration

2. Send the result string either to CommandsFromPLC or ResultsToPLC depending on whether the task run in
synchronous mode or not.

Tasks
AlignPlus tasks are automatically generated by configuration wizard based on configurations of calibration, feature finder,
and alignment components. Here is an example of configuration wizard and its generated tasks.

l configuration wizard Configuration

220

Program Workflow

l Tasks generated by configuration above

Each component in configuration wizard will result in the generation of one or more tasks after configuration wizard finishes
running. The names of those tasks have certain relationships with their corresponding component names.

Component Generated Task Task Example Task Function Task
Trigger
Mode

hand-eye
calibration

<Calibration Name>_Loop HECalib_Loop The purpose of this task is to
generate various motion
device poses for the
purpose of hand-eye
calibration, and at each
pose to call the <Calibration
Name>_
ComputeCalibResults task.
This task is only generated
when Vision System
Guided option is checked
on in the stage device in
configuration wizard

Manually
or by
external
command

<Calibration Name>_
ComptueCalibResults

HECalib_
ComptueCalibResults

Move the motion device if
necessary, capture images,
extract features and
accumulate features of
calibration target at each
stage pose and finally run
calibration calculation.

Manually,
by
external
command,
or by
hand-eye
calibration
loop task.

221

Program Workflow

Component Generated Task Task Example Task Function Task
Trigger
Mode

General
Calibration(
Manual
Calibration,
Checkerboard
Calibration , or
Cross
Calibration)

<Calibration Name> CrossCalib Capture images at each
acquisition position, and
then extract features and
run calibration.

Manually,
by
external
command

Finder <Finder Name>_<Connected
Calibration Name>

Features0_CrossCalib This task captures all the
images needed to find the
features on a part and
locates all the features by
running feature finders.
This task can run during
train time or run time.

Manually,
by
external
command

Alignment <Alignment Name> Alignment0 Compute the alignment
pose for the motion device
to achieve the desired
assembly characteristics.
This task is executed after
the tasks that locate the
features on the part are
executed.

Manually,
by
external
command

Hand-eye
Calibration

<Calibration Name>_
MotionAnalysisPoseGenerator

HECalib_
MotionAnalysisPoseGenerator

Motion analysis tasks are
used to conduct various
tests of the motion device.
The purpose of this task is to
generate the various motion
device poses for the
purpose of testing, and at
each pose to call the
<Calibration Name>_
MotionAnalysis task.

Manually

<Calibration Name>_
MotionAnalysis

HECalib_MotionAnalysis This task moves the motion
devices, acquires the
images, extracts and
accumulates features and
stage poses, and computes
the results using the
accumulated data.

Called by
Motion
Analysis
Pose
Generator
task

Note: When an application that controls the motion device during calibration is generated by selecting the Vision
System Guided option, during hand-eye calibration, the PLC has to send commands that execute the tasks that perform
"looping". This task calls the <Calibration Name>_ComputeCalibResults task. If the Vision System Guided option is not
selected, the PLC has to send commands that execute the <Calibration Name>_ComputeCalibResults task. This
condition also applies to tasks that perform motion analysis.

Task Execution Mode
The various vision tasks in the application serve various purposes. Vision tasks can be generated to perform hand-eye
calibration, cross-calibration, extract features on parts, to compute alignment parameters, etc. Each task can be executed to
perform specific type of actions. Tasks can be executed in various modes. For example, in application that employ a single
camera to capture two images of non-overlapping image regions on a single part, the task can be executed to acquire
images of a part at a first position, and then it can be executed to acquire images of the part at a second position and to use
both the images to locate features. Largely each vision task can be executed in three modes.

222

Program Workflow

l Acquire Only

l Acquire and Process

l Process Image.

The execution mode is defined in the command string that external device sends to the vision system.

StepID
StepIDs are automatically defined when the application is generated by the configuration wizard. They can be found at the
top of CommandHandler script.

For sample application above, the automatically generated StepIDs are as follow:

l Hand-eye calibration loop task's step ID is 0

l Hand-eye calibration ComputeCalibResult task's step ID is 1

l Cross calibration task has three StepIDs since it has three different image acquisition positions. Accordingly, external
devices should call this task three times with different StepIDs and different execution modes to finish cross
calibration process.

l Features0 has two StepIDs since it acquires images at two different positions. It should be called two times with
different StepIDs during train-time and run-time.

l Alignment0 has one StepID, 7

l Motion analysis tasks have stepIDs 8 and 9.

EncodedID
EncodedID is part of command string that external device sends to the vision system to run a task. It contains StepID of
requested task, as well as the task execution mode:

1. Acquire Only

In this mode, EncodedID = StepID + 1000.

2. Acquire and Process

In this mode, EncodedID = StepID

3. Process Only

In this mode, EncodedID = StepID + 2000.

This table summarizes the various vision tasks that can be performed by the sample application:

223

Program Workflow

Category Task StepID Action EncodedID

Calibration HECalib_
Loop

0 Only one command with Process Image action to trigger hand-eye
calibration loop, then the loop will take control the rest of process

2000

CrossCalib 2 First command to Acquire Image at position 0 1002

3 Second command to Acquire Image at position 1 1003

4 Third command to Acquire Image and Process at position 2 4

Train Time Features0_
CrossCalib

5 First command to Acquire Image at position 0 1005

6 Second command to Acquire Image and Process at position 1 6

Run Time Features0_
CrossCalib

5 First command to Acquire Image at position 0 1005

6 Second command to Acquire Image and Process at position 1 6

Alignment0 7 One command to Process Image 2007

Command String
Command String is a string which external devices send to vision application requesting one task or multiple tasks be
executed, it is composed of three parts: Command Key, EncodedID and optional parameters.

Command Key
Command key indicates the type of action that a vision task has to perform. For example, the hand-eye calibration task can
be started, continued or completed by sending a suitable command key. Similarly a task that finds the features on a part can
be executed to perform train-time or run-time actions through a suitable command key.

Here are the most frequently used command keys in AlignPlus:

CommandKey Description When to use
ACB Auto Calibration Begins Vision Guided Hand-eye Calibration

AC Auto Calibration

HEB Hand-eye Calibration Begins Motion Guided Hand-eye Calibration

HE Hand-eye Calibration

HEE Hand-eye Calibration Ends

IC Intrinsic Calibration Checkerboard Calibration, Cross Calibration or Manual
Calibration

TA Train Alignment. Registers the golden pose of
the target.

Train Time Commands

TT Train VGR step (register target, single or
multiply shots)

TTR Train VGR step (register robot pick/place
position for a target)

LF Locate Features Feature Finding in run time.

GP Get Pose Pose Computing

LFA Locate Features Asynchronously Feature Finding in run time in asynchronous mode

GPA Get Pose Asynchronously Pose Computing in asynchronous mode

LFGP First run Locate Feature, second run Get Pose Feature Finding and Pose Computer in run time

MEA Measure Run inspection

MEAA Measure Asynchronously Run inspection asynchronously

LFMEA Locate Features, then Measure Run feature finding first, then run inspection

224

Program Workflow

CommandKey Description When to use
MGP Multi-part Get Pose Multi-part pose computation

MGPA Multi-part Get Pose Asynchronously Run multi-part pose computation

LFMGP Locate Featues, then run Multi-part Get Pose Run feature finding first, then run multi-part pose
computation synchronously

Parameters
Some commands require additional parameters from the PLC. For example, applications such as LF, or GP require the
current pose of the alignment device to execute correctly. These additional parameters are encoded in the command string.

CommandArgs
When the application receives a command string, an object of type CommandArgs is created in the CommandHandler script.
This object contains all the data needed to execute the task correctly. Some of the data that is encoded includes the task
execution mode, current stage position received in the command string etc. Additional information can be added to the
object using the CommandArgs.SetCustomArgs method. Every task has a Command subtask which is used to receive
CommandArgs settings from Task Scheduler.

The table below shows main properties of the CommandArgs class and their equivalent with Command String.

Name Description Command String
CommandFromPLC Command received from PLC/Robot Command String itself

StepID StepID associated with the command StepID decoded from EncodedID

CommandName The name of requested task Decoded from StepID

PositionIndex Acquisition position index. This parameter will be
used when a camera or set of cameras, captures
images of a part at different physical locations

Decoded from StepID

ExecutionMode l Acquire: Perform acquisition only

l AcquireAndProcessImage: Acquire and
process image

l ProcessImage: Do not acquire and
process only

Decoded from EncodedID

AlignmentOperation Specify if the pose computer is receiving training
data or data to be used for alignment, or if the
feature finder is extracting training data or run-
time data for alignment

l Train: Pose computer is receiving training
data, or feature finder is extracting training
data

l Align: Pose computer is receiving data for
aligning parts

Decoded based on CommandKey: TT or TA
command are for Train, LF, LFA or LFGP
commands are for Align

225

Program Workflow

Name Description Command String
HECalibrationOperation Specify hand-eye calibration operations

l ClearAndAccumulateFeatures:
Accumulate features after clearing
accumulator

l AccumulateFeatures: Accumulate
features

l ComputeResults: Compute hand-eye
calibration results

l AccumulateFeaturesAndComputeResults:
Compute hand-eye calibration results

Decoded based on CommandKey:
HEB command will set operation as
ClearAndAccumulateFeatures, HE command
will set as AccumulateFeatures; HEE
command will set as ComputeResults.
When Vision Guided mode is used for hand-
eye calibration, those parameters will be set
by hand-eye calibration loop task
automatically.

ErrorCode Error code associated with the command ErrorCode is generated by the vision system,
and then stored here and at last forwarded to
external device when there is any error
happens.

SerialNumber Serial number of part Equals to PartID specified in LF, LFA, GP,
GPA, LFGP, MEA, MEAA, LFMEA, MGP,
MGPA or LFMGP command. For other
commands, it's an empty string.

OtherArgs Other Info, like current x, y, theta value of motion
or any other user defined content set using the
method CommandArgs.SetOtherArgs

Saves current pose of motion device that
specified in parameters of command string

Token A unique identifier for the command argument An ID generated by vision system for any input
Command String

Task Workflow

Hand-eye Calibration Task
Hand-eye Calibration ComputeCalibResults task extracts and accumulates features of the calibration target at each stage
pose, and finally computes hand-eye calibration results. The task can be executed by three types of command keys: HEB
command to initialize the hand-eye calibration, HE command at each stage pose to extract and accumulate features and
poses, HEE command to compute the calibration results using the accumulated data. Henceforth, we refer hand-eye
calibration ComputeCalibResults task as hand-eye calibration task.

The hand-eye calibration task has 6 subtasks: Command, Acquisition, Image Saver2, Raw Image Display, Calibration, and
ImageSaver2 Sync Trigger.

Command
When a command string is received by the CommandHandler script, an equivalent CommandArgs object is created. This
object contains all the data that is needed to execute the target task. The task scheduler passes the CommandArgs object to

226

Program Workflow

the target task and the object is made available to the task by the Command subtask. The Command subtask makes the
object available in its output pin, and also publishes it as a tag. Various components within the task either use the tag or the
output available at the pin to act appropriately. For example, a downstream subtask may use the tag to implement a
Condition expression that conditionally executes the task. Or, the customer can intercept the object that is available at the
output of the subtask to add any additional data that are required by their customizations.

Execution Mode
The hand-eye calibration task uses three execution modes: Acquire, AcquireAndProcessImage, and ProcessImage.

l ExecutionMode: Acquire

AlignPlus supports applications that use a single camera to acquire multiple images of various non-overlapping
regions of a part, also known as shuttling camera applications. During the hand-eye calibration process, for every
pose of the alignment motion device, the task acquires the images at all positions before locating the calibration
target features, The command string that executes the task should have the execution mode field set to Acquire in the
encodedID when only acquiring images at the various positions. For applications that do not use shuttling cameras,
the ExecutionMode is never set to Acquire.only.

When ExecutionMode is Acquire, the task will only runs Acquisition subtask, Raw Image Display subtask, and Image
Saver2 task.

l ExecutionMode: AcquireAndProcessImage

When cameras are at last acquisition position for a given stage pose during calibration, the execution mode in the
encodedID in the command string has to be set to AcquireAndProcessImage. When the task is executed, the image
at the last position is captured and calibration target features are located in all images captured at all camera
positions. In this case, ExecutionMode should be set as AcquireAndProcessImage. The workflow below shows all its
sub tasks and the execution sequence.

227

Program Workflow

l ExecutionMode: ProcessImage

At the beginning of hand-eye calibration process, the accumulated features and stage poses inside calibration
subtask has to be cleared. The task has to be executed by creating a command string with command key set to HEB
and the ExecutionMode in the encodedID set to ProcessImage.

When all the features need to calibrate have been accumulated, the task is executed using a command string with
command key set to HE and execution mode in the encodedID set to ProcessImage. This results in the computation
of the hand-eye calibratino results.

The work flow below shows all its sub tasks and their execution sequence.

Acquisition
Running condition:[ExecutionMode = Acquire || AcquireAndProcessImage]

Acquisition subtask triggers cameras to acquire images of the calibration target at a position encoded in the encodedID in
the command string that executes the task.

For a shuttling camera application that uses two cameras that shuttle to two positions, the hand-eye calibration task is
executed twice. The first using a command string with an encodedID that encodes the first position and with execution mode
set to Acquire. The second using a command string with an encodedID that encodes the second position and with execution
mode set to AcquireAndProcessImage. Both the executions execute the Acquisition subtask.

Command ExecutionMode Position
Index

Image
Item

Before
Acquisition

Acquisition at
Pos0

Acquisition at
Pos1

1 Acquire 0 Cam0Pos0 Null /

0 Cam1Pos0 Null /

2 AcquireAndProcessImage 1 Cam0Pos1 Null Null

1 Cam1Pos1 Null Null

For non-shuttling camera applications, a single command string with an encodedID that encodes the execution mode to
AcquireAndProcessImage is used to acquire the image.

228

Program Workflow

Command ExecutionMode Position Index Image Item Before Acquisition Acquisition at Pos0
1 AcquireAndProcessImage 0 Cam0Pos0 Null

0 Cam1Pos0 Null

Calibration
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

The calibration subtask is executed during various phases of the hand-eye calibration process. When the task is executed
because of a command string with command key set to HEB, the accumulators that gather calibration target features and
stage poses are cleared and readied to perform a new hand-eye calibration.

IDuring the feature accumulation phase, the task is executed by a command string with command key set to HE. During this
phase the features on the calibration target are extracted and accumulated in the Calibration subtask. Image and graphic
data that are computed during feature extraction and published by the VPro Records publisher. Image display HMI
subscribe the published data and provide a visual feedback of the calibration process to the user.

After all the required features are extracted, the task is executed by a command string with the command key set to HEE.
During this phase, the accumulated features are used to compute and publish the hand-eye calibration results in the
Calibration subtask. Image correctors that compensate for imaging system non-linearities to generate a distortion free image
are trained. Data that provides feedback about the quality of the motion device is publishedAfter all the required features are
extracted, the task is executed by a command string with the command key set to HEE. During this phase, the accumulated
features are used to compute and publish the hand-eye calibration results in the Calibration subtask. Image correctors that
compensate for imaging system non-linearities to generate a distortion free image are trained. Data that provides feedback
about the quality of the motion device is published.

229

Program Workflow

Subtasks for Saving Images
The hand-eye calibration task saves all acquired images in TIF format along with the command data that executed the task.
These images can be used to generate hand-eye calibration results in an off-line mode. It also supports screenshots saving
in JPG files for user to manually review feature extraction results. There are two subtasks that are used to save images.

Image Saver2
Running condition: Always run.

Image Saver2 subtask accumulates raw images and their corresponding commands every time when hand-eye calibration
task acquires images. The accumulated images and commands would get cleared when Image Saver2 Sync Trigger
subtask is called at the end of the task.

Image Saver2 Sync Trigger
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Image Saver2 Sync Trigger subtask saves all accumulated raw images and their commands from Image Saver2 subtask into
TIF files if current task's raw image saving function is enabled. It also saves image records into JPG files when screenshot
saving function is enabled. See how to enable raw image saving and screenshot saving in Image Saving on page 201Image
Saving on page 201

Raw Image Display
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Raw Image Display subtask publishes raw images for image display. The published images are the raw images captured by
the cameras and do not include any graphics. Those records will be shown on task's image display page if "Display Raw
Image" is selected in functional panel below navigation tree. See more information at Show Graphics in Multiple Display on
page 65.

Hand-eye Calibration Loop Task
The purpose of the hand-eye calibration loop task is to move a motion device to various poses and at each pose to execute
the hand-eye calibration task to extract, accumulate and finally compute the hand-eye calibration results. The task is
executed when the application receives a command string with command key HEB or ACB, with a suitably EncodeID.

Calibration Loop
The hand-eye calibration loop task has only one subtask called CalibrationLoop. The subtask has two blocks of significance.
The first block, the CalibrationLoopBlock, is responsible for initializing the hand-eye calibration process and for locating and
accumulating all calibration features and stage poses. A user sets the properties for the block that include the range of
motion for each degree of freedom of the motion device, and parameters that control how this range is sampled. The block
first initializes the hand-eye calibration task by executing it with the HEB command. It extracts and accumulates calibration
target features by executing the hand-eye calibration task with the HE command. Once all the features are accumulated, the
second block in the CalibrationLoop subtask, called the Compute Results block, computes the hand-eye calibration results
by executing the hand-eye calibration task with the HEE command.

230

Program Workflow

Stage Move
The stage is moved before any image is acquired during the hand-eye calibration process. A script <StageName>Move is
called by the Acquisition subtask in the hand-eye calibration task before the images are acquired. See more information
about this in How to Command Stage to Move.

Cross Calibration Task
Cross calibration task uses the result of hand-eye calibration that has been performed on one of the substations to compute
the relationship between Raw2D and Home2D for the cameras at the other substations. The task has 7 subtasks: Command,
Acquisition, Calibration, HECalibCalib2DFromStage2D, Image Saver2, ImageSaver2 Sync Trigger, and Raw Image Display.
To trigger a cross calibration task, you can use IC command.

Command
When a command string is received by the CommandHandler script, an equivalent CommandArgs object is created. This
object contains all the data that is needed to execute the target task. Command subtask is the interface to receive
CommandArgs object from task scheduler which makes the object available to current task as an output pin and a public tag.

There are two properties in CommandArgs object that control the work flow of cross calibration task: Execution Mode and
PositionIndex. ExecutionMode decides whether current task should acquire image and/or process image. PositionIndex
specifies which position cameras should acquire images at.

231

Program Workflow

Execution Mode

l ExecutionMode: Acquire

When cameras are not at their last acquisition position, cross calibration task shall only acquire images when it's
called. Therefore, the ExecutionMode should be set as Acquire in this case, and accordingly, the task will only run
Acquisition, Image Saver2 and Raw Image Display subtasks to acquire, accumulate, and display raw images at
current position.

l ExecutionMode: AcquireAndProcessImage

When cameras are at their last acquisition position, cross calibration task should acquire images and run calibration
when it's called. ExecutionMode here should be set as AcquireAndProcessImage so that the task will run Acquisition,
Calibration, and HECalib Calib2D From Stage2D subtasks sequentially to finish image acquisition, run checkerboard
calibration, and map Home2D from hand-eye calibrated station to Raw2D for cameras at current station. It also save
images to image files if image saving function is enabled and generates raw image records in case user wants to
show raw images on image display. The work flow below shows all its sub tasks and their execution sequence.

Acquisition
Running condition:[ExecutionMode = Acquire || AcquireAndProcessImage]

For a cross-calibration task where cameras at a second substation are cross-calibrated to a set of hand-eye calibrated
cameras at the first station the cross-calibration task is executed twice. The first using a command string with an encodedID
that encodes the one of the positions and with execution mode set to Acquire. The second using a command string with an
encodedID that encodes the other position and with execution mode set to AcquireAndProcessImage. Both the executions
execute the Acquisition subtask.

232

Program Workflow

Command ExecutionMode Position
Index

Image
Item

Before
Acquisition

Acquisition at
Pos0

Acquisition at
Pos1

1 Acquire 0 Cam0Pos0 Null /

0 Cam1Pos0 Null /

2 AcquireAndProcessImage 1 Cam0Pos1 Null Null

1 Cam1Pos1 Null Null

Calibration
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Calibration subtask is only available in checkerboard-based or hybrid cross calibration, it runs checkerboard calibration for
each input raw images, and publish their train correctors for later use in feature finding task's image correction subtask. The
output is a dictionary of VisionPro records with corrected checkerboard images and their extracted features.

HECalib Calib2D FromStage2D
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

This subtask establishes transforms between Home2D from hand-eye calibrated stations with Raw2D from cameras in
current station. These transforms will be used for run time feature finding.

Image Saving
Cross calibration task can save all raw images in TIF files for user to playback cross calibration process. It also supports
screenshots saving in JPG files for user to manually review feature extraction results.

Image Saver2
Running condition: Always run.

Image Saver2 subtask accumulates raw images and their corresponding commands every time when current task acquires
images. The accumulates images and commands would get cleared when Image Saver2 Sync Trigger subtask is called at
the end of the task.

Image Saver2 Sync Trigger
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

233

Program Workflow

Image Saver2 Sync Trigger subtask saves all accumulated raw images and their commands from Image Saver2 subtask into
TIF files if current task's raw image saving function is enabled. It also saves image records into JPG files when screenshot
saving function is enabled. See how to enable raw image saving and screenshot saving in Image Saving on page 201

Raw Image Display
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Raw Image Display subtask generates raw image records(images without graphics) for image display. Those records will be
shown on task's image display page if "Display Raw Image" is selected in functional panel below navigation tree. See more
information at Show Graphics in Multiple Display on page 65.

Feature Finding Task
The Feature Finding task acquires images of a part and locates the features on the part. It has the subtasks shown in the
image below. This task could be executed during train-time or run-time. During train-time the task could be executed to
locate part feature locations at train-time and/or set train-time gripper positions. During run-time the task is executed to locate
run-time part feature locations. Some of the command keys that can be encoded in the command string are TA/TT/TTA
commands, used during train-time, or LF/LFA used during run-time.

The following are the commands that the user can send to the feature finder task for an application that acquires images of a
single part at two positions. The application is one where the gripper of the robot is to be aligned to the part:

Command Index Command Key Position Index Description
1 TA 0 Acquire images at position 0 at train-time

2 TA 1 Acquire image and process image at position 1 at train-time

3 TTR 1 Save gripper's train time pose

4 LF/LFA 0 Acquire images at position 0 at run-time

5 LF/LFA 1 Acquire image and process image at position 1 at run-time

Command
When a command string is received by the CommandHandler script, an equivalent CommandArgs object is created. This
object contains all the data that is needed to execute the target task. Command subtask is the interface to receive
CommandArgs object from task scheduler which makes the object available to current task as an output pin and a public tag.

There are four properties in the CommandArgs object that controls the work flow of feature finding task: ExecutionMode,
PositionIndex, AlignmentOperation and SavePoseDuringTraining. ExecutionMode decides which sub tasks should got
executed. PositionIndex specifies which position cameras should acquire images at. AlignmentOperation specifies whether
it's train time or run time fro feature finding. SavePoseDuringTraining indicates whether motion device's train time pose
should be save or not.

234

Program Workflow

Execution Mode

l ExecutionMode: Acquire

When cameras are not at their last acquisition position, feature finding task shall only acquire images when it's
called. Therefore, the ExecutionMode should be set as Acquire in this case, and accordingly, the task will only run
Acquisition, Image Saver2 and Raw Image Display subtasks to acquire, accumulate, and display raw images at
current position.

l ExecutionMode: AcquireAndProcessImage

When cameras are at their last acquisition position, feature finding task should acquire images and run feature
finding when it's called. In this case, ExecutionMode here should be set as AcquireAndProcessImage, and the task
will run Acquisition, Corrector, Feature Extractor, L-Check, Result Publisher subtasks sequentially to finish image
acquisition, image correction, feature extraction, feature length check and publish results. It also save images to
image files if image saving function is enabled and generates raw image records in case user wants to show raw
images on image display. The work flow below shows all its subtasks and their execution sequence.

Acquisition
Running condition: [ExecutionMode = Acquire || AcquireAndProcessImage]

Acquisition subtask acquires images of the part at the position index encoded in the encodedID.

For a shuttling camera application that uses two cameras that shuttle to two positions, the feature finder task is executed
twice. The first using a command string with an encodedID that encodes the first position and with execution mode set to
Acquire. The second using a command string with an encodedID that encodes the second position and with execution mode
set to AcquireAndProcessImage. Both the executions execute the Acquisition subtask.

Command ExecutionMode Position
Index

Image
Item

Before
Acquisition

Acquisition at
Pos0

Acquisition at
Pos1

1 Acquire 0 Cam0Pos0 Null /

0 Cam1Pos0 Null /

235

Program Workflow

Command ExecutionMode Position
Index

Image
Item

Before
Acquisition

Acquisition at
Pos0

Acquisition at
Pos1

2 AcquireAndProcessImage 1 Cam0Pos1 Null Null

1 Cam1Pos1 Null Null

For non-shuttling camera applications, a single command string with an encodedID that encodes the execution mode to
AcquireAndProcessImage is used to acquire the image.

Command ExecutionMode Position Index Image Item Before Acquisition Acquisition at Pos0
1 AcquireAndProcessImage 0 Cam0Pos0 Null

0 Cam1Pos0 Null

Corrector
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

The corrector subtask uses image correctors for removing non-linear imaging distortion. All Cognex vision tools assume an
affine relationship between the image and the world. By removing non-linear distortion image correctors ensure the vision
tools work accurately. The output of this task is a list of corrected images.

Feature Extractor
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

Feature extractor sub task extract features from corrected images using feature finders set by user in Alignment setup
interface for locating train-time and run-time features. The output of this sub task are train time and/or run time command,
train time and/or run time features, and their graphics.

l Train Time

At train time, when TA/TT command string is sent to vision system, CommandHandler will set AlignmentOperation of
current command as Train. Within Feature Extractor subtask, it will first run feature extraction, then update train time
features in its publisher. It will also update train time graphics.

236

Program Workflow

When TTR command string is sent to vision system, CommandHandler will set as True , and the Feature Extractor
subtask will save train time command(motion device's train time X, Y, Theta are included) into its publisher.

l Run Time

At train time, when LF/LFA command string is sent to vision system, CommandHandler will set AlignmentOperation
of current command as Align. Within Feature Extractor subtask, it will first run feature extraction, then update run time
command(motion device's current X, Y, Theta are included) and run time features so that they will be save in their
publishers. It will also update run time features to VproRecords so that corresponding image display will be updated.

L-Check
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

L-Check subtask checks if the distance between pairs of features are within specification. The outputs of this sub task are
measured lengths and if the lenghts meet the specification.

237

Program Workflow

Result Publisher
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

The Result Publisher subtask publishes all train-time, offset camera centers, and run-time feature locations for other tasks in
the applications to consume. It also publishes the CommandArgs object that was received at train-time. Other tasks consume
the object to get the train-time gripper position. Result publisher subtask also outputs overall OK/NG signal based on feature
finding OK/NG signal, L-Check OK/NG signal and customized OK/NG signal. The customized OK/NG signal is from on open
input pin, it will be ignored for overall OK/NG judgement if it's not implemented.

Display Recorder Generator
Running condition: [ExecutionMode = ProcessImage || AcquireAndProcessImage]

Display Recorder Generator sub task merges VisionPro records from feature extractor subtask with customized VisionPro
records for image displays.

Image Saving
Feature finding task can save all raw images in TIF files for user to playback feature finding process. It also supports
screenshots saving in JPG files for user to manually review feature extraction results.

Image Saver2
Running condition: Always run.

238

Program Workflow

Image Saver2 subtask accumulates raw images and their corresponding commands every time when current task acquires
images. The accumulates images and commands would get cleared when Image Saver2 Sync Trigger subtask is called at
the end of the task.

Image Saver2 Sync Trigger
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Image Saver2 Sync Trigger subtask saves all accumulated raw images and their commands from Image Saver2 subtask into
TIF files if current task's raw image saving function is enabled. It also saves image records into JPG files when screenshot
saving function is enabled. See how to enable raw image saving and screenshot saving in Image Saving on page 201

Raw Image Display
Running condition:[ExecutionMode = ProcessImage || AcquireAndProcessImage]

Raw Image Display subtask generates raw image records(images without graphics) for image display. Those records will be
shown on task's image display page if "Display Raw Image" is selected in functional panel below navigation tree. See more
information at Show Graphics in Multiple Display on page 65.

Alignment Task
Alignment task calculates how much motion device should move to bring the parts to target positions. It also has other
functions such as allowing user to add offsets, checking whether alignment data is with spec and saving all images from
connected feature finders to image files. Alignment task is triggered by GP/GPA command, or LFGP command if user want to
run alignment right after run time feature finding.

Command
When a command string is received by the CommandHandler script, an equivalent CommandArgs object is created. This
object contains all the data that is needed to execute the target task. Command subtask is the interface to receive
CommandArgs object from task scheduler which makes the object available to current task as an output pin and a public tag.

There are two properties in the CommandArgs object that controls the workflow of alignment task: ExecutionMode and
AlignmentOperation. In alignment task, ExecutionMode should always be set as ProcessImage and AlignmentOperation is
always set as Align.

Feature And Command Subscribers
Running condition: Always run.

This subtask subscribes train time and run time features and their commands from corresponding feature finders' tasks. For
assembly application when assembly is performed using paired-features mode, this subtask will subscribe two
corresponding feature finder's run time features and their commands. For assembly application where assembly parameters
are computed using golden pose mode, both train time and run time features as well as their commands for the two
corresponding feature finders will be subscribed. For alignment applications, the subtask will subscribe to only one
corresponding feature finder's train time and run time features and their commands, it will also subscribe that feature finder's

239

Program Workflow

offset camera centers, and use either the train time features or offset camera centers as output trained features depending
on user's choice. See more information about offset camera centers at Camera Center Parameters on page 205.

Offset Compensation
Running condition: Always run.

Offset compensation allows user to manually input offsets to run time features to compensate the final alignment or assembly
result based on feedback from inspection results. See more information at Offset Compensation on page 207.

Pose Computer
Running condition: [ExecutionMode = ProcessImage]

Alignment or Assembly
For alignment or assembly applications, pose computer subtask computes transforms between target position and current
position using Points To Points Centering Block on page 269, and then use Stage Pose Computer on page 270 to calculate
the desired stage pose based on hand-eye calibration results, stage's current pose or trained pose as well as the transform
computed by Points To Points Centering Block. The output of this block are absolute target pose and the relative change in
stage pose.

Here is an example of Pose Computer subtask for Align To Base application where a transform from run time features to
train time features are computed first, and then forwarded to stage pose computer that computes target pose.

Here is an example for Assembly Guided Pick application using paired features mode.

Multiple Part Alignment
For multiple part alignment applications, pose computer first computes the transforms from multiple run time features to a
commonly trained features using Point to Point Centering block, and then computes the target poses for robots to pick up
every parts one by one accurately; or the target poses for stage to align every parts one by one to the common golden pose.
The differences between multiple part alignment and single part alignment are that the input of multiple part alignment is
multiple parts' run time features instead of single one's, and the outputs are a list of absolute and relative x, y, and theta
instead of one set of absolute and relative poses.

240

Program Workflow

Inspection
For inspection applications, pose computer takes in run time features, runs measurements between paired features,
generates new display records by merging measurement records with feature finding graphics, outputs an overall
measurement OK/NG judgment and the results for every measurement items.

Limit Check
Running condition: Always run.

Limit check use pose computer's output x, y, theta as input, to check if they're within certain alignment limit specs defined on
by user. See more information at Placement Limit Checker on page 212.

Generate Results Publisher And Logger
Running condition: Always run.

This subtask saves all alignment or assembly result data into a dictionary and publishes the dictionary data in Task Results
Block. It also saves all the result data using the Result Logger Block into an alignment log file whose stored directory is
specified by user in Logging Setup on page 197.

241

Program Workflow

The result data includes: connected feature finder's train time(if golden pose is used) and run time features information,
relative and absolute pose that motion device should move to, Error Code, Error Message, IsOK from LCheck, and user data
from user's customization.

Subtasks for Image Saving
When alignment task's image saving function is enabled, it save the following images to corresponding sub folders:

1. Save each feature finder's run time raw images and their commands into TIF files, save those images with their graphics
into JPG files under that feature finder's sub folder;

2. Save an 1x1 dummy TIF file with alignment command into alignment sub folder.

Here is an example of auto generated sub folders for alignment image saving:

Image Subscriber
Running condition: Always run.

This subtask subscribes all images lists and their commands from connected feature finders. Those images later can be
used for image saving or image display.

Image List Saver2
Running condition: Always run.

Image List Saver2 subtask split image lists based on different feature finders so that afterward images from different feature
finders will be saved into different sub folders.

Image Saver2
Running condition: Always run.

242

Program Workflow

Image Saver2 subtask combines alignment command with an 1x1 image which would be saved into a TIF file in Image
Saver2 Sync Trigger subtask.

Image Saver2 Sync Trigger
Running condition: Always run.

Image Saver2 Sync Trigger subtask saves all images and their commands saved in Image List Saver2 subtask(s) and Image
Saver2 subtask into TIF files if current feature finder's raw image saving function is enabled. It also saves image records in
Image List Saver2 subtasks(s) into JPG images when screenshot is enabled. See how to enable raw image saving and
screenshot saving in Image Saving on page 201

Subtasks
Common Sub Tasks
The following subtasks are common subtasks that are used in many different tasks.

Commands Subtask
When a command string is received by the CommandHandler script, an equivalent CommandArgs object is created. This
object contains all the data that is needed to execute the target task. The task scheduler passes the CommandArgs object to
the target task and the object is made available to the task by the Command subtask. The Command subtask makes the
object available in its output pin, and also publishes it as a tag. Various components within the task either use the tag or the
output available at the pin to act appropriately. For example, a downstream subtask may use the tag to implement a
Condition expression that conditionally executes the task. Or, the customer can intercept the object that is available at the
output of the subtask to add any additional data that are required by their customizations.

The output of this subtask is the received command.

Output Type Description
Command CommandArgs Received command from CommandHandler for current task

Acquisition Subtask
Acquisition subtask acquires images in calibration tasks and feature finding tasks at given acquisition position encoded in
the EncodedID of a command string and consequently in the CommandArgs object that is output by the Command subtask.

The input is current command which comes from Command subtask. Acquisition subtask only acquires images at given
position index specified by input command.

Input Type Description
Command CommandArgs Current input command of the task

243

Program Workflow

The outputs are acquisition settings of current task, current command and image collection, as well as accumulated
commands and images collections at all already acquired positions.

Output Type Description
AccumlatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different acquisition positions.

AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera
indexes, camera enable/disable status, exposure time and
position indexes.

Command CommandArgs Current command of the task, it's the same with the input
Command.

ImageCollection CogImageCollection A collection of images acquired at current position index.

Raw Image Display Subtask
Raw Image Display subtask creates raw image records(images captured by the cameras, without graphics) that will be
shown on feature finder's display if user choose to display raw images.

Its inputs are the same with Acquisition subtask's outputs.

Input Type Description
AccumlatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different acquisition positions.

AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera
indexes, camera enable/disable status, exposure time and
position indexes.

Command CommandArgs Current command of the task, it's the same with the input
Command.

ImageCollection CogImageCollection A collection of images acquired at current position index.

ImageSaver2 Subtask
Image Saver2 subtask accumulates raw images and their corresponding commands every time when images arrive. The
accumulated data would get cleared when a subsequent Image Saver2 Sync Trigger subtask executes.

244

Program Workflow

Its inputs include command, image collection and user data at current acquisition position, and acquisition settings of current
task.

Input Type Description
AcquisitionSettings AcquisitonSettings The acquisition settings for current task, which includes

camera indexes, camera enable/disable status,
exposure time and position indexes.

Command CommandArgs Current command of the task

ImageCollection CogImageCollection A collect of images acquired at current position index.

UserData IEnumerable<KeyValuePair<String,String>> Metadata which will be saved into CDB files, not used in
current version.

ImageSaver2 Sync Trigger Subtask
Image Saver2 Sync Trigger subtask saves all accumulated raw images and their commands, received by the Image Saver2
subtask, into TIF files if raw image saving function of current task is enabled. It also saves image records into JPG images
when screenshot saving is enabled.

Its inputs include current command, overall OK/NG judgement for current part, and VisionPro records for each camera at
each acquisition position.

Input Type Description
Command CommandArgs Current command of the task

IsNG Nullable<Boolean> Whether those images are NG images

VisionProRecords IReadOnlyDictionary<String,
VisionProRecord>

A dictionary of images and their graphics for each camera at
each acquisition position

Calibration Sub Tasks
Calibration Subtask
Calibration subtask performs calibration related functions.

245

Program Workflow

The inputs are acquisition settings of current task, current command and image collection, as well as accumulated
commands and images collections at all already acquired positions.

Input Type Description
AccumlatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different acquisition positions.

AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera
indexes, camera enable/disable status, exposure time and
position indexes.

Command CommandArgs Current command of the task, it's the same with the input
Command.

ImageCollection CogImageCollection A collection of images acquired at current position index.

The output is a dictionary of VisionPro Records that could be used to shown on image display.

Output Type Description
VisionProRecords IReadOnlyDictionary<String, vprorecord> A dictionary of images and their graphics from current task

This subtask publishes the results of calibration that other tasks consume.

Calib2DFromStage2D Subtask
This subtask computes the Home2DFromRaw2D transform for the current station.

The inputs are acquisition settings of current task, accumulated commands, and images collections at all already acquired
positions.

Input Type Description
AccumlatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different acquisition positions.

AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera
indexes, camera enable/disable status, exposure time and
position indexes.

246

Program Workflow

Calibration Loop Subtask
Calibration Loop subtask does not have any input or output pins. In applications where the vision system guides the motion
device, it works with the hand-eye calibration task to move the motion device to various poses, gather calibration target data
and compute calibration results.

Feature Finding Sub Tasks
The following subtasks are used in feature finding tasks.

Corrector Subtask
Images captured by the cameras can have a non-linear relationship between the image pixel locations and real world
locations, due to non-linearities in the imaging system. The Corrector subtask generates images free from these non-
linearities. The output images will be corrected images without lens distortion and perspective distortion.

The input and output pin names depend upon the finding task name. Output pin names depend upon the camera names
and the acquisition positions.

l Hand-eye Calibration Corrector

l Cross Calibration Corrector

This subtask has five inputs generally named: Accumulated Commands, Accumulated Image Collection, Acquisition
Settings, Command, and Image Collection.

Input Type Description
AccumulatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different acquisition positions.

AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera
indexes, camera enable/disable status, exposure time and
position indexes.

247

Program Workflow

Input Type Description
Command CommandArgs Current command of the mother task, it's the same with the input

Command.

ImageCollection CogImagesCollection A list of images acquired at current position index.

Outputs are corrected images for each camera's acquisition position.

Output Type Description
Camera0Pos0 ICogImage Corrected image of Camera0 at position0

Camera0Pos1 ICogImage Corrected image of Camera0 at position1

Camera1Pos0 ICogImage Corrected image of Camera1 at position0

Camera1Pos1 ICogImage Corrected image of Camera1 at position1

Note: Input and output descriptor labels in the tables above are illustrative only, the actual input and output pin names
will be based on project configuration.

Feature Extractor Subtask
Feature extractor subtask extracts features from corrected image. The feature type could be point, line, or generic features
(see more information about generic feature in AlignPlus Concept\Feature Finding\Features) depending on which type is
selected in configuration wizard. The input and output names are appended with feature finder name and/or its connected
calibration name. For example, "AcquisitionSettingsFeatures0CrossCalib" means Acquisition Settings for "Features0" finder
which connects "CrossCalib" calibration component.

The input image number would change according to the number of images a feature finding task acquires for feature
extraction.

Input Type Description
AcquisitionSettings AcquisitionSettings The acquisition settings for current task, which includes camera indexes, camera

enable/disable status, exposure time and position indexes.

Command CommandArgs Current command of the task, it is the same with the input pin.
Camera0Pos0 ICogImage Corrected image of Camera0 at position0.

Camera0Pos1 ICogImage Corrected image of Camera0 at position1.

Camera1Pos0 ICogImage Corrected image of Camera1 at position0.

Camera1Pos1 ICogImage Corrected image of Camera1 at position1.

The outputs include train time and run time features and their corresponding commands, feature extraction OK/NG signal,
feature extraction data, and VisionPro Records.

Output Type Description
Command CommandArgs Current run time command, it is the same with input pin.

248

Program Workflow

Output Type Description
CommandTrain CommandArgs Command that is saved when stage pose is trained.

DetectedFeatures List<CogAlpsPointFeature> /
List<CogAlpsLineFeature> /
List<CogAlpsGenericFeature>

Current run time feature list.

DetectedFeaturesTrain List<CogAlpsPointFeature> /
List<CogAlpsLineFeature> /
List<CogAlpsGenericFeature>

Saved train time feature list.

FeatureExtractorData CogDictionary A dictionary which tracks the serial number of current part and
whether its feature finding is OK or NG. It has two keys inside:
"IsNG" and "TagFileName".

FeatureExtractorIsNG Boolean Whether current part's feature are all found and valid

OffsetCameraCenters List<CogAlpsPointFeature> A list of point features whose locations are provided by user's
inputs on "Camera Center Parameters" page. This list of features
will be used as trained golden pose feature locations for pose
computer in alignment task if user choose "Align To Camera
Center" on HMI

VisionProRecords IReadOnlyDictionary<String,
vprorecord>

A dictionary of VisionPro records which saves each camera
acquisition position's image and graphics.

L-Check Subtask
L-Check subtask checks lengths between pairs of feature points. It only supports single part point features currently.

The input is a point feature list.

Input Type Description
InputPointFeatures List<CogAlpsPointFeature> A list of found point features

Outputs are each length and its OK/NG check result, and the overall L-Check result.

Output Type Description
L-
CheckIsNG

Boolean Whether input point features pass all length checks specified by user on
user interface.

Results List<Tuple<String, Double,
Boolean>>

A dictionary of all length checks with length values and whether they pass
specifications.

Results Publisher Subtask
Results publisher subtask publishes: run time and train time features, run time and train time commands. The published data
is subscribed by other tasks in the application.

249

Program Workflow

Input pins includes run time and train time features and their commands and three NG checks: Feature extraction OK/NG
check, L-Check OK/NG check and customized OK/NG check. For the sake of generality, specific finder name and
corresponding calibration name in input names are ignored.

Input Type Description
Command CommandArgs Current command of the task

CommandTrain CommandArgs Save train time command
CustomizationIsNG Nullable Boolean Open pin for user to input customized OK/NG check

DetectedFeatures List<CogAlpsPointFeature> /
List<CogAlpsLineFeature> /
List<CogAlpsGenericFeature>

Current run time feature list

DetectedFeaturesTrain List<CogAlpsPointFeature> /
List<CogAlpsLineFeature> /
List<CogAlpsGenericFeature>

Train time feature list

FeatureExtractorIsNG Nullable Boolean Whether feature extraction is successful or not for current part

L-CheckIsNG Nullable Boolean Whether L-Check is passed or not for current part

OffsetCameraCenters List<CogAlpsPointFeature> A list of point features whose locations are provided by user's
inputs on "Camera Center Parameters" page. This list of features
will be used as trained golden pose feature locations for pose
computer in alignment task if user choose "Align To Camera
Center" on HMI

The output is the overall OK/NG judgement.

Output Type Description
IsNG Boolean Overall OK/NG check based on FeatureExtractorIsNG, L-CheckIsNG and CustomizationIsNG input pins

Display Record Generator Subtask
Display Recorder Generator subtask merges VisionPro records from feature extractor subtask with customized VisionPro
records for image displays.

250

Program Workflow

Input Type Description
CustomizationFeatureExtractorData CogDictionary Customized feature extraction data. It depends on user

how to specify the content inside.

CustomizationVisionProRecords IReadOnlyDictionary<String,
vprorecord>

Customized VisionPro records

FeatureExtractorData CogDictionary A dictionary which tracks the serial number of current
part and whether its feature finding is OK or NG. It has
two keys inside: "IsNG" and "TagFileName".

VisionProRecords IReadOnlyDictionary<String,
vprorecord>

A dictionary of VisionPro records from feature extractor
subtask which saves each camera acquisition
position's image and graphics.

The output is a dictionary of merged VisionPro records for each camera at each acquisition position.

Input Type Description
VisionProRecords IReadOnlyDictionary<String,

vprorecord>
A dictionary of merged VisionPro records which saves each camera
acquisition position's image and graphics.

Alignment Sub Tasks
The following subtasks are used in alignment task.

Feature And Command Subscribers Subtask
This subtask subscribes train time and run time features and their commands from feature finder tasks that compute features
needed to align the part.

The input is current command of the task.

Input Type Description
Command CommandArgs Current command for alignment task

The outputs are subscribed train time and run time features and their commands, and current alignment task command.

Output Type Description
Command CommandArgs Current command for alignment task, the same with

input command

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of run time features from connected feature
finder

Features0Command CommandArgs The last run time command to trigger connected feature
finder to run image acquisition and feature extraction

251

Program Workflow

Output Type Description
MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from connected

multiple part feature finder.
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

MultiplePartStatus List<Integer> The feature finding result status list for all sub regions
on a tray from the connected multiple part feature
finder. For each status:
1: success
<=0: fail
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

TrainFeatures0CommandData CommandArgs The last train time command used for connected feature
finder's image acquisition and feature extraction

TrainFeatures0Data List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of train time features from connected feature
finder

Offset Compensation Subtask
Offset compensation allows user to manually add offsets to run time features to compensate the final alignment or assembly
result based on inspection result feedback.

The inputs are subscribed train time and run time features and their commands, and current alignment task command.

Input Type Description
Command CommandArgs Current command for alignment task, the same with

input command

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of run time features from connected feature
finder

Features0Command CommandArgs The last run time command to trigger connected feature
finder to run image acquisition and feature extraction

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the connected
multiple part feature finder.
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

MultiplePartStatus List<Integer> The feature finding result status list for all sub regions
on a tray from the connected multiple part feature
finder. For each status:
1: success
<=0: fail
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

252

Program Workflow

Input Type Description
TrainFeatures0CommandData CommandArgs The last train time command used for connected feature

finder's image acquisition and feature extraction

TrainFeatures0Data List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of train time features from connected feature
finder

The outputs are the same with inputs except that run time features/multiple parts features may have been compensated with
offsets.

Output Type Description
Features0 List<CogAlpsPointFeature> /

List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The compensated run time features from the connected feature
finder

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the connected multiple
part feature finder.
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration Wizard
before the application was generated

Pose Computer Subtask
Alignment or Assembly
For alignment or assembly applications, pose computer subtask computes transforms between target position and current
position, and calculates alignment parameters that would result in the desired part alignment or assembly.

The inputs are the same with offset compensation subtask's.

Input Type Description
Command CommandArgs Current command for alignment task, the same with

input command

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of run time features from connected feature
finder

Features0Command CommandArgs The last run time command to trigger connected feature
finder to run image acquisition and feature extraction

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the connected
multiple part feature finder.
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

253

Program Workflow

Input Type Description
MultiplePartStatus List<Integer> The feature finding result status list for all sub regions

on a tray from the connected multiple part feature
finder. For each status:
1: success
<=0: fail
Only available when the connected alignment type was
configured as "Multiple parts" in the Configuration
Wizard before the application was generated

TrainFeatures0CommandData CommandArgs The last train time command used for connected feature
finder's image acquisition and feature extraction

TrainFeatures0Data List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of train time features from connected feature
finder

The outputs are train time and run time features, relative and absolute stage positions.

Output Type Description
AbsoluteStageMotionThetaDegrees l Double: for single part

alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Theta-value of absolute pose stage should
move to from current pose or trained pose

AbsoluteStageMotionX l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Y-value of absolute pose stage should move
to from current pose or trained pose

AbsoluteStageMotionY l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The X-theta value of absolute pose stage should
move to from current pose or trained pose

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of features from connected feature finder

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the
connected multiple part feature finder.
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

MultiplePartStatus List<Integer> The feature finding result status list for all sub
regions on a tray from the connected multiple part
feature finder. For each status:
1: success
<=0: fail
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

RelativeStageMotionThetaDegrees l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Theta-value of relative pose stage should
move from current pose or trained pose

254

Program Workflow

Output Type Description
RelativeStageMotionX l Double: for single part

alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Y-value of relative pose stage should move
from current pose or trained pose

RelativeStageMotionY l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The X-theta value of relative pose stage should
move from current pose or trained pose

TrainFeatures0Data List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of trained features from connected feature
finder

Inspection
For inspection applications, pose computer measures distances between paired features and checks if they are within
required ranges, and outputs a list of measurement items, their values, and their tolerance check results.

Although there are seven input pins for an inspection PoseComputer subtask as shown above, this subtask only uses four
inputs internally: Command, Features0, Features0Graphics_Camera0Pos0, and Features0Graphics_Camera1Pos0.

Input Type Description
Command CommandArgs Current command for alignment task, the same with input

command

Features0 List<CogAlpsGenericFeature> The list of run time features from the connected feature
finder

Features0Graphics_
Camera0Pos0

CogGraphicCollection The feature finding graphics for Camera0 at position0

Features0Graphics_
Camera1Pos0

CogGraphicCollection The feature finding graphics for Camera1 at position0

This subtask passes through the run time features without any change to them, at the same time outputs the overall OK/NG
result and the measurement result list.

Output Type Description
Features0 List<CogAlpsGenericFeature> The list of run time features from the connected feature finder

IsNG Boolean True: when all tolerance checks are passed
False: when at least one of the of tolerance checks fails

Results List<Tuple<String, Double,
Boolean>>

The list of inspection result. Each result has three elements: name of the
tolerance check (String type), the value of the tolerance check (Double type),
and whether the check is passed (Boolean type)

255

Program Workflow

Limit Check Subtask
Limit check use pose computer's output x, y, theta as input, to check if they're within certain alignment limit specs defined by
user.

The inputs are the same with Pose Computer subtask's outputs.

Input Type Description
AbsoluteStageMotionThetaDegrees l Double: for single part

alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Theta-value of absolute pose stage should
move to from current pose or trained pose

AbsoluteStageMotionX l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Y-value of absolute pose stage should move
to from current pose or trained pose

AbsoluteStageMotionY l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The X-theta value of absolute pose stage should
move to from current pose or trained pose

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of features from connected feature finder

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the
connected multiple part feature finder.
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

MultiplePartStatus List<Integer> The feature finding result status list for all sub
regions on a tray from the connected multiple part
feature finder. For each status:
1: success
<=0: fail
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

256

Program Workflow

Input Type Description
RelativeStageMotionThetaDegrees l Double: for single part

alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Theta-value of relative pose stage should
move from current pose or trained pose

RelativeStageMotionX l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Y-value of relative pose stage should move
from current pose or trained pose

RelativeStageMotionY l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The X-theta value of relative pose stage should
move from current pose or trained pose

TrainFeatures0Data List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of trained features from connected feature
finder

Besides passing all the original inputs without any change down as ouputs, Limit Check subtask also outputs Limit Check
OK/NG result, and ErrorCode.

Output Type Description
ErrorCode l String for single part alignment or two parts

assembly

l List<String> for multiple parts alignment

ErrorCode or a list of ErrorCode when Limit Check is NG

IsOK Boolean Whether current pose computation result(s) pass Limit
Check

GenerateResultsPublisherAndLogger Subtask
This subtask saves all alignment or assembly result data into a dictionary and publishes that dictionary in Task Results
Block.

257

Program Workflow

The inputs are train time and run time features, relative and absolute pose stage should move/move to, LCheck OK/NG
result, LCheck ErrorCode, customized Error Message, and customized User Log Data.

Input Type Description
AbsoluteStageMotionThetaDegrees l Double: for single part

alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Theta-value of absolute pose stage should
move to from current pose or trained pose

AbsoluteStageMotionX l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The Y-value of absolute pose stage should move
to from current pose or trained pose

AbsoluteStageMotionY l Double: for single part
alignment or two parts
assembly

l List<Double>: for multiple
parts alignment

The X-theta value of absolute pose stage should
move to from current pose or trained pose

ErrorCode l String: for single part
alignment or two parts
assembly

l List<String>: for multiple
parts alignment

ErrorCode when LCheck is NG

ErrorMsg String Error message for user to customize

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of features from connected feature finder

MultiplePartFeatures List<List<CogAlpsPointFeature>> The list of run time parts' features from the
connected multiple part feature finder.
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

MultiplePartStatus List<Integer> The feature finding result status list for all sub
regions on a tray from the connected multiple part
feature finder. For each status:
1: success
<=0: fail
Only available when the connected alignment
type was configured as "Multiple parts" in the
Configuration Wizard before the application was
generated

IsOK Boolean Whether LCheck is passed or not

RelativeStageMotionThetaDegrees Double The Theta-value of relative pose stage should
move from current pose or trained pose

RelativeStageMotionX l String: for single part
alignment or two parts
assembly

l List<String>: for multiple
parts alignment

The Y-value of relative pose stage should move
from current pose or trained pose

RelativeStageMotionY l String: for single part
alignment or two parts
assembly

l List<String>: for multiple
parts alignment

The X-theta value of relative pose stage should
move from current pose or trained pose

258

Program Workflow

Input Type Description
TrainFeatures0Data List<CogAlpsPointFeature> /

List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of trained features from connected feature
finder

UserLogData OrderedDictionary User data for user to customize data to be added
at the end alignment log

Inspection

Input Type Description
ErrorCode l String: for single part

alignment or two parts
assembly

l List<String>: for multiple
parts alignment

ErrorCode when LCheck is NG

ErrorMsg String Error message for user to customize

Features0 List<CogAlpsPointFeature> /
List<CogAlpsLineFeature>/
List<CogAlpsGenericFeature>

The list of features from the connected feature finder

IsNG Boolean True: when all tolerance checks are passed
False: at least one of the of tolerance checks fails

Results List<Tuple<String, Double,
Boolean>>

The list of inspection result. Each result has three elements: name of the
tolerance check (String type), the value of the tolerance check (Double
type), and whether the check is passed (Boolean type)

UserLogData OrderedDictionary User data for user to customize data to be added at the end alignment log

Image Subscriber Subtask
This subtask subscribes images captured by the corresponding feature finder tasks that compute features that are used by
this alignment task.

The output pin names are related to specific feature finding task names. For the same of generality, feature finding task
names are ignored in decription. The outputs are acquisition settings of the feature finding task, command and image
collection, as well as accumulated commands and images collections from feature finding task.

259

Program Workflow

Output Type Description
AccumulatedCommands List<CommandArgs> Accumulated commands that have been sent to Acquisition

subtask to acquire a whole set of images at all acquisition
positions in connected feature finding task.

AccumulatedImageCollections List<CogImageCollection> Accumulated images acquired at different acquisition positions
in connected feature finding task.

AcquisitionSettings AcquisitonSettings The acquisition settings for connected feature finding task,
which includes camera indexes, camera enable/disable
status, exposure time and position indexes.

Command CommandArgs Last run time command of connected feature finding task

ImageCollection CogImageCollection A collection of images acquired at last position index in
connected feature finding task

Image List Saver2 Subtask
Image List Saver2 subtask saves the images captured by corresponding feature finder task.

The inputs are acquisition settings of connected feature finding task, last run time command and accumulated commands
and images collections from collected feature finding task, as well as UserData that could be used as metadata for CDB files.

Input Type Description
AccumulatedCommands List<CommandArgs> Accumulated commands that have been sent

to Acquisition subtask to acquire a whole set
of images at all acquisition positions in
connected feature finding task.

AccumulatedImageCollection List<CogImageCollection> Accumulated images acquired at different
acquisition positions in connected feature
finding task.

AcquisitionSettings AcquisitonSettings The acquisition settings for connected feature
finding task, which includes camera indexes,
camera enable/disable status, exposure time
and position indexes.

Command CommandArgs Last run time command of connected feature
finding task

UserData IEnumerable<KeyValuePair<String,String>> User defined Metadata for image saving in
CDB format. Not used.

260

Program Workflow

General Tool Block

Alignment

Generic Features Finder
This block allows the configuration of multiple generic feature finders (for example, a feature finder). When executed in a
sequence, this block runs the configured finders on its input images and outputs a list of the found features and graphics.

This block has three modes of operation:

l Setup Mode - An interactive editor is used to add, remove or modify the feature finders. A version of this interactive
editor is available in the HMI Toolbox, under AlignPlus->Alignment->Generic Features Finder. Alternatively, the
public methods provided by the block can be used for this purpose.

l Reference Part Mode - The block is executed and the feature finders will be run as they should be on a reference
part.

l Runtime Mode - The block is executed and the feature finders will be run as they should be for a runtime part.

This block supports only custom feature finder:

l A custom feature finder, represented by a VisionPro CogToolBlock. The tool block contains input terminals to receive
an image set from a single camera and output terminals to return the located generic feature results. The tool block
can use all the images in the image set to locate a single feature.

When adding feature finders, a given input image can have multiple feature finders configured for it, and some input images
need not have any feature finders.

The output result for the block is a list of elements of type CogAlpsGenericFeature, where each entry will have the feature
location, a Boolean that indicates if the feature was found, a camera identifier and an image identifier. Additionally, the block
will output a set of graphics of type CogGraphicCollections, one for each camera, which can be used to display the features
location graphics. Each collection will contain the graphics generated by all the feature finders for the corresponding
camera. It is expected that a collection will be combined with an appropriate image to generate a VisionPro record for
display.

General Information
Class name: GenericFeaturesFinderBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Inputs
Name Type Description

Cam0Image ICogImage The image from camera 0. A corrected image should be supplied on this pin.
Additional pins will be created based on the Number Of Cameras property. Pins of this type
will be displayed only if the Number Of Images Per Camera property is equal to one.

261

General Tool Block

Name Type Description
Is
Reference
Part

Boolean If true, when executed the block computes features on a reference part.
If false, when executed the block will behave as it should for a run time part.
For custom tool block, it depends on user how to utilize this parameter

User Data CogDictionary Contains a CogDictionary with user specified data. This data will be forwarded to all finders
When there is no data needed, still an empty user data need to link to this pin, otherwise, tool
block will consider this pin as null and pop out an error when running

Outputs
Name Type Description

Feature
Graphics0

CogGraphicCollection The graphics generated by all the feature finders for camera 0. Additional pins of this
type will be created based on the Number Of Cameras property.
Each graphic will be in the Selected Space for this block. Custom feature finder tool
blocks must generate all results and graphics in the Selected Space.
Additional logic (such as the CogRecord Creator block) can be used to combine
these graphics with an image, for display in a VisionPro Display.

Generic
Features

List<
CogAlpsGenericFeature
on page 1>

Contains a list of generic features. Each item in the list corresponds to the results of a
single feature finder.
Each item will contain the feature location and a Boolean indicating if the feature was
found. There is no particular order in which the generic features are output, however
the order does not change until another feature finder has been added.

IsNG Boolean True: features are all found
False: one or more features are not found

Properties

Parameters Type Description
Number of
Cameras

Integer Get/set the number of cameras supplying images to this block

l The total number of CamXImage pins or is equal to the Number of Cameras property.
The number of pins changes immediately upon a change to this property.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected
range

Number of
Images Per
Camera

Integer Get/set the number of cameras supplying images to this block. If this property is greater than
one, then the block will accept image sets (CogImageCollections) for its input pins. The
purpose of accepting an image set from each camera is to allow feature location to be
performed on images captured under different acquisition conditions from a single camera.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected
range

Selected
Space

String Get/set the selected space in which the finders run. The selected space is the coordinate
system in which all feature finders return results (such as locations, distances and graphics)
and in which the tools interpret input data (such as regions of interest).

l Each input image should allow the mapping of image features in the corrected image to
this selected space.

l All the feature locations will be generated in the selected space.

If the selected space is not present in the coordinate space tree of an image to be used for
feature location, a suitable exception will be thrown when the sequence block is executed.

262

General Tool Block

Line Features Finder
This block allows the configuration of multiple line feature finders (for example, a line finder). When executed in a sequence,
this block runs the configured finders on its input images and outputs a list of the found lines and graphics.

This block has three modes of operation:

l Setup Mode - An interactive editor is used to add, remove or modify the feature finders. A version of this interactive
editor is available in the HMI Toolbox, under AlignPlus->Alignment->Line Features Finder. Alternatively, the public
methods provided by the block can be used for this purpose.

l Reference Part Mode - The block is executed and the feature finders will be run as they should be on a reference
part.

l Runtime Mode - The block is executed and the feature finders will be run as they should be for a runtime part.

Two types of line feature finders are supported:

l A line finder, represented by a VisionPro CogFindLineTool tool. This tool is set up to run on a single selected camera
image.

l A custom feature finder, represented by a VisionPro CogToolBlock. The tool block contains input terminals to receive
an image set from a single camera and output terminals to return the located line feature results. The tool block can
use all the images in the image set to locate a single feature.

When adding feature finders, a given input image can have multiple feature finders configured for it, and some input images
need not have any feature finders.

The output result for the block is a list of elements of type CogAlpsLineFeature, where each entry will have the feature
location, a Boolean that indicates if the feature was found, a camera identifier and an image identifier. Additionally, the block
will output a set of graphics of type CogGraphicCollections, one for each camera, which can be used to display the features
location graphics. Each collection will contain the graphics generated by all the feature finders for the corresponding
camera. It is expected that a collection will be combined with an appropriate image to generate a VisionPro record for
display.

General Information
Class name: LineFeaturesFinderBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Inputs
Name Type Description

Cam0Image ICogImage Image from specific camera
Is
Reference
Part

Boolean True: train time reference feature
False: run time
For custom tool block, it depends on user how to utilize this parameter

User Data CogDictionary Dictionary type of data available for user to feed more information into toolblock.
When there is no data needed, still an empty user data need to link to this pin, otherwise,
toolblock will consider this pin as null and pop out an error when running

263

General Tool Block

Outputs
Name Type Description

Feature
Graphics0

CogGraphicCollection A collection of graphics on one image to show where the feature is. This can be
configured/customized on UI.

IsNG Boolean True: features are all found
False: one or more features are not found

Line
Features

List<CogAlpsLineFeature
on page 1>

A list of features in which feature’s location, name, and many other properties
are all included.

Properties

Name Type Description
Number of
Cameras

Integer Get/set the number of cameras supplying images to this block

l The total number of CamXImage pins or is equal to the Number of Cameras property. The
number of pins changes immediately upon a change to this property.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected range

Number of
Images
Per
Camera

Integer The Number Of Images Per Camera property controls the number of images expected for each
camera.
If this property is greater than one, then the block will accept image sets (CogImageCollections) for
its input pins. The purpose of accepting an image set from each camera is to allow feature location
to be performed on images captured under different acquisition conditions from a single camera.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected range

Selected
Space

String Get/set the selected space in which the finders run. The selected space is the coordinate system in
which all feature finders return results (such as locations, distances and graphics) and in which the
tools interpret input data (such as regions of interest).

l Each input image should allow the mapping of image features in the corrected image to
this selected space.

l All the feature locations will be generated in the selected space.

l The graphics generated by the first feature finders (line finder) will also be in this space.

If the selected space is not present in the coordinate space tree of an image to be used for feature
location, a suitable exception will be thrown when the sequence block is executed.

Lines To Lines Centering Block
The block computes the transform that centers the GroupB line segments to their corresponding GroupA line segments.

264

General Tool Block

General Information
Class name: LinesToLinesCenteringBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Inputs
Name Type Description

GroupA Line Segments List<CogAlpsLineFeature on page 1> Line features representing GroupA
GroupB Line Segments List<CogAlpsLineFeature on page 1> Line features representing GroupB

Outputs
Name Type Description

Distances
between
GroupA and
Transformed
GroupB Line
Segments

CogDictionary The gap distances between Transformed GroupB Line Segments and GroupA
Line Segments. For mode CenterGroupALineSegEndPointsToGroupBLines,
distance for each line segment is computed by averaging the point-line distance
of its two end points. For mode CenterGroupAPointPairsToGroupBLinePairs,
distance for each line segment is exactly the distance computed by the
CogCenterPointsToLines tool.

GroupA from
GroupB
Transform

CogTransform2DLinear The transform that centers the line segments of GroupB to line segments of
GroupA

Transformed
GroupB Line
Segments

List<
CogAlpsLineFeature
on page 1>

GroupB's line features after applying transform, theoretically it should be very
close to Group A line features

Properties

Name Type Description
Maximum
Search
Angle

double This parameter sets the upper limit the rotation angle of the result transform. The value is specified
in degrees

Minimum
Search
Angle

double This parameter sets the lower limit the rotation angle of the result transform. The value is specified
in degrees

265

General Tool Block

Name Type Description
Normal
Direction
Inference
Method

Constant Property specifies how the line segment normal direction is inferred

l InferFromConvexity
Automatically infer the line segment normal direction for each input line segment. It
requires the input line segments to form a convex shape. It selects the normal direction for
each line segment such that the line normal points outwards.

l UseLineSegmentNormalDirection
Use the direction of the given line segments to determine the normal direction for each line
segment. The direction of a line segment is implied by the ordering of its start and end
points (end - start). The normal direction is defined to be +90 degrees from the line
segment direction.

Pose
Computation
Method

Constant There are two options:

l CenterGroupALineSegEndPointsToGroupBLines
For point to line fitting. The feature correspondences are between GroupA line segment
end points(two end points for each line segment) and GrouB lines. This block will minimize
the variance in the point to line signed distance across all point to line correspondences,
as a result, it tries to make all of the point to line distances the same.

l CenterGroupAPointsPairsToGroupBLinePairs
For point pair to line pair fitting. The feature correspondences are between GroupA line
segment middle points(one middle point for each line segment) and GrouB lines. This
block will minimize the variation in the point to line signed distance differences, across all
point pair line pair correspondences. The point to line distance difference for a given point
pair line pair correspondence is the difference between the point to line distance for the
first point and the point to line distance for the second point in the point pair. The class tries
to make the two point to line signed distances in each point pair line pair correspondence
the same. Signed distances are measured in the direction of the normal to the line.

For more information, please refer to AlignPlus Concpet\Pose Compute\Part Pose Change
Computation.

Timeout
Enabled

Boolean If true, the tool will time out after the time specified by the TimeoutValue property has elapsed

Timeout
Value

Double If TimeoutEnabled property is true, the tool will time out after the value of this property. The value is
in milliseconds.

Point Feature Finder
This block allows the configuration of multiple point feature finders (for example, a PatMax pattern or a corner finder). When
executed in a sequence, this block runs the configured finders on its input images and outputs a list of the found points and
graphics.

This block has three modes of operation:

l Setup Mode - An interactive editor is used to add, remove or modify the feature finders. A version of this interactive
editor is available in the HMI Toolbox, under AlignPlus->Alignment->Point Features Finder. Alternatively, the public
methods provided by the block can be used for this purpose.

l Reference Part Mode - The block is executed and the feature finders will be run as they should be on a reference
part.

l Runtime Mode - The block is executed and the feature finders will be run as they should be for a runtime part.

Three types of point feature finders are supported:

l A pattern finder, represented by a VisionPro CogPMAlignTool tool. This tool is set up to run on a single selected
camera image.

l A corner finder, represented by a VisionPro CogCornerFinderTool tool. This tool is set up to run on a single selected
camera image.

266

General Tool Block

l A custom feature finder, represented by a VisionPro CogToolBlock. The tool block contains input terminals to receive
an image set from a single camera and output terminals to return the located point feature results. The tool block can
use all the images in the image set to locate a single feature.

When adding feature finders, a given input image can have multiple feature finders configured for it, and some input images
need not have any feature finders.

The output result for the block is a list of elements of type CogAlpsPointFeature, where each entry will have the feature
location, a Boolean that indicates if the feature was found, a camera identifier and an image identifier. Additionally, the block
will output a set of graphics of type CogGraphicCollections, one for each camera, which can be used to display the features
location graphics. Each collection will contain the graphics generated by all the feature finders for the corresponding
camera. It is expected that a collection will be combined with an appropriate image to generate a VisionPro record for
display.

General Information
Class name: PointFeaturesFinderBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Inputs
Name Type Description

Cam0Image ICogImage The image from camera 0. A corrected image should be supplied on this pin.
Additional pins will be created based on the Number Of Cameras property. Pins of this type
will be displayed only if the Number Of Images Per Camera property is equal to one.

Is
Reference
Part

Boolean If true, when executed the block computes features on a reference part.
If false, when executed the block will behave as it should for a run time part.
For custom tool block, it depends on user how to utilize this parameter

User Data CogDictionary Contains a CogDictionary with user specified data. This data will be forwarded to all finders.
When there is no data needed, still an empty user data need to link to this pin, otherwise,
toolblock will consider this pin as null and pop out an error when running

Outputs
Name Type Description

Feature
Graphics0

CogGraphicCollection The graphics generated by all the feature finders for camera 0. Additional pins of this
type will be created based on the Number Of Cameras property.
Each graphic will be in the Selected Space for this block. Custom feature finder tool
blocks must generate all results and graphics in the Selected Space.
Additional logic (such as the CogRecord Creator block) can be used to combine these
graphics with an image, for display in a VisionPro Display.

IsNG Boolean True: features are all found
False: one or more features are not found

Point
Features

List<
CogAlpsPointFeature
on page 1>

Contains a list of point features. Each item in the list corresponds to the results of a
single feature finder.
Each item will contain the feature location and a Boolean indicating if the feature was
found. There is no particular order in which the point features are output, however the
order does not change until another feature finder has been added.

267

General Tool Block

Properties

Name Type Description
Multiple
Finders
Per
Feature
Mode

Bool True: There could be more than one single feature finders outputs features with the same feature name.
Those features with the same feature name will be considered as just one feature and only the one with
the highest score will take part in pose computation.
False: One single feature outputs one unique feature.

Number
of
Cameras

Integer Get/set the number of cameras supplying images to this block

l The total number of CamXImage(X stands for camera index) pins or is equal to the Number of
Cameras property. The number of pins changes immediately upon a change to this property.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected range

Number
of Images
Per
Camera

Integer Get/set the number of images supplied by each camera. If this property is greater than one, then the
block will accept image sets (CogImageCollections) for its input pins. The purpose of accepting an
image set from each camera is to allow feature location to be performed on images captured under
different acquisition conditions from a single camera.

l Throws System.ArgumentOutOfRangeException: If it is set to a value out of expected range

Selected
Space

String Get/set the selected space in which the finders run. The selected space is the coordinate system in
which all feature finders return results (such as locations, distances and graphics) and in which the
tools interpret input data (such as regions of interest).

l Each input image should allow the mapping of image features in the corrected image to this
selected space.

l All the feature locations will be generated in the selected space.

l The graphics generated by the first two feature finders (the pattern finder and corner finder) will
also be in this space.

If the selected space is not present in the coordinate space tree of an image to be used for feature
location, a suitable exception will be thrown when the sequence block is executed.

Show
PatMax
Params
On
Graphic

Bool True: show PatMax result scores on image display
False: hide PatMax result scores on image display

When camera number is 2, the block’s appearance is as below:

268

General Tool Block

Note: PointFeatureFinder block is optimized for minimizing vision task execution time: Each finder runs independently
and asynchronously within Point Feature Finder tool block.

Points To Points Centering Block
The block computes the transform that maps the GroupB points to their corresponding GroupA points.

General Information
Class name: PointsToPointsCenteringBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Inputs
Name Type Description

GroupA Points List<CogAlpsPointFeature> Point features representing the target position of the part
GroupB Points List<CogAlpsPointFeature> Point features representing the current position of the part

*Only shows when Accept Multiple GroupB Point Sets property is
set as false.

GroupB Points
List

List<List<CogAlpsPointFeature>> A list of GroupB Points representing multiple run time parts' current
positions.
*Only shows when Accept Multiple GroupB Point Sets property is
set as true.

Outputs
Name Type Description

Distances between GroupA and
Transformed GroupB Points

CogDictionary Average distances between Transformed GroupB
points and GroupA points.

GroupA from GroupB Transform CogTransform2DLinear The transform that maps the points of GroupB to points
of GroupA.
*Only shows when Accept Multiple GroupB Point Sets
property is set as false.

GroupA from GroupB Transforms List<CogTransform2DLinear> A list of transforms that maps GroupB point sets to
GroupA point set.
*Only shows when Accept Multiple GroupB Point Sets
property is set as true.

269

General Tool Block

Name Type Description
Transformed GroupB Points List<CogAlpsPointFeature> GroupB's Point features after applying transform,

theoretically it should be very close to Group A line
features

Properties

Name Type Description
Accept Multiple GroupB
Point Sets

Boolean True: this block will compute multiple transforms that map each GroupB point set to
Group A point set.
False: this block only computes one transform that map one GroupB point set to
Group A point set.

Degrees of Freedom to
Compute

Constant Degrees of Freedom taking into consideration while calculating GroupB to GroupA
linear transform

Stage Pose Computer
The Stage Pose Computer block is used to compute the required stage motion to properly align one or more parts. It can be
used for two types of applications: alignment and assembly. When the type of application is selected using the
ApplicationType property, the block reconfigures its pins appropriately. This block works for stationary and moving camera
configurations.

Application types are as follows:

For Alignment applications, the block accepts a TrainFromRun transform. The transform can be computed externally using a
PointsToPointsCenteringBlock, LinesToLinesCenteringBlock or any custom block that computes such a transform. The
TrainFromRun transform will be used along with the current uncorrected stage position and the hand-eye calibration results
to compute the relative and absolute stage pose parameters.

All input and output stage pose parameters will be in UnCorrectedHome2DFromStage2D. The motivation behind accepting
and outputting uncorrected pose parameters is that the position is always reported by a motion control system. Similarly, the
pose correction that is desired is conveyed to the motion control system.

270

General Tool Block

General Information
Class name: StagePoseComputerBlock

Namespace: Cognex.Designer.AlignPlus.Alignment

Assembly: Cognex.Designer.AlignPlus.Alignment.dll

Properties

Name Type Description
Align Part
to Base

Boolean Checked on: Align Part to Base
Checked off: Align Part to Gripper

Application
Type

Cognex.Designer.AlignPlus.Alignment.
StagePoseComputerBlock.Application

Select the type of application as follows:

l When the value of this property is Alignment, the block will
configure itself for use in an alignment application. The
TrainFromRun pin, which takes the trainFromRun transform as
an input, will be displayed.

l When the value of the property is Assembly, the block will
configure itself for use in an assembly application. The
TrainFromRun At Station With Stage and TrainFromRun At
Station Without Stage pins will be displayed.

Alignment

Inputs
Name Type Description

Current Stage X double X component of stage's current position
Current Stage Y double Y component of stage's current position

Current Stage Theta
Degrees

double Theta component of stage's current position

HandEye Calibration
Results

Cognex.VisionPro.
CogHandEyeCalibrationResults

HandEye Calibration Results outputted from Handeye Calibrator
on page 284
The results are used to convert the position reported by the stage
to the actual position.

TrinFromRun Cognex.VisionPro.
CogTransform2DLinear

The TrainFromRun transform of a part. This pin is displayed if
ApplicationType==Alignment

271

General Tool Block

Outputs
Name Type Description

Absolute Stage Motion
X

Double The absolute X position that the stage should be moved to in order to achieve the desired
alignment/assembly

Absolute Stage Motion
X

Double The absolute Y position that the stage should be moved to in order to achieve the desired
alignment/assembly

Absolute Stage Motion
Theta Degrees

Double The absolute rotation in degrees that the stage should be subject to in order to achieve
the desired alignment/assembly

Relative Stage Motion
X

Double The X position relative to the current position that the stage should be moved to in order to
achieve the desired alignment/assembly

Relative Stage Motion
Y

Double The Y position relative to the current position that the stage should be moved to in order to
achieve the desired alignment/assembly

Relative Stage Motion
Theta Degrees

Double The rotation relative to the current rotational position in degrees that the stage should be
subject to in order to achieve the desired alignment/assembly

Assembly
For Assembly applications, the block accepts two TrainFromRun transforms. One for a stationary part and the other is for a
moving part. The two poses, along with the current uncorrected stage position and the hand-eye calibration results to
compute the relative and absolute stage pose parameters.

For assembly applications the block assumes that during train time the parts are placed such that when assembled by a
repeatable assembly mechanism the parts would have the desired assembly. The block will output stage positions that
would assemble the run-time part and train-time part similarly.

When Assembly is chosen in "Application Type" property, the input pins of Stage Pose Computer will change as below:

Inputs
Name Type Description

Traintime Pose At Guided
Theta Degrees

Double Theta component of moving station's trained position

Traintime Pose At Guided
X

Double X component of moving station's trained position

Traintime Pose At Guided
Y

Double Y component of moving station's trained position

Traintime Pose At Target
Theta Degrees

Double Theta component of stationary station's trained position

Traintime Pose At Target X Double X component of stationary station's trained position

272

General Tool Block

Name Type Description
Traintime Pose At Target Y Double Y component of stationary station's trained position

Current Uncorrected Stage
Theta Degrees

Double Theta component of moving station's current position

Current Uncorrected Stage
X

Double X component of moving station's current position

Current Uncorrected Stage
Y

Double Y component of moving station's current position

HandEye Calibration
Results

CogHandEyeCalibrationResults HandEye Calibration Results outputted from Handeye
Calibrator on page 284
The results are used to convert the position reported by the
stage to the actual position.

TrainFromRun At Station
With Stage

CogTransform2DLinear The TrainFromRun transform of the moving part. This pin is
displayed if ApplicationType==Assembly

TrainFromRun At Station
Without Stage

CogTransform2DLinear The TrainFromRun transform of the stationary part. This pin
is displayed if ApplicationType==Assembly

Outputs
Name Type Description

Absolute Stage Motion
X

Double The absolute X position that the stage should be moved to in order to achieve the
desired assembly

Absolute Stage Motion
X

Double The absolute Y position that the stage should be moved to in order to achieve the
desired assembly

Absolute Stage Motion
Theta Degrees

Double The absolute rotation in degrees that the stage should be subject to in order to achieve
the desired assembly

Relative Stage Motion X Double The X position relative to the current position that the stage should be moved to in order
to achieve the desired assembly

Relative Stage Motion Y Double The Y position relative to the current position that the stage should be moved to in order
to achieve the desired assembly

Relative Stage Motion
Theta Degrees

Double The rotation relative to the current rotational position in degrees that the stage should be
subject to in order to achieve the desired assembly

Calibration

Cal Plate Feature Accumulator
The purpose of this block is to accumulate stage poses and the correspondence data extracted from a calibration target at
those poses. Each time the block is executed, it adds the data from its input pins to a set of accumulated data, and outputs
the current contents of the accumulated data on the output pins.

If the block is executed with a value of true on the Clear Accumulator pin, the accumulated data is cleared, then the current
inputs are accumulated.

273

General Tool Block

General Information
Class name: FeatureAccumulatorBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Inputs
Name Type Description

Clear Accumulator Boolean If true, the accumulator will first be cleared during execution of the
block before accumulation of the other inputs.

FeatureCrspsMCameras CogFeatureCrspsMCameras The correspondence pair data from a set of cameras.
It is expected that this input will be connected to the
FeatureCrspsMCameras output pin of the
CheckerGridFeatureExtractor block.

Stage Pose Theta In
Degrees

Double The rotation component (in degrees) of the stage position used to
collect the correspondence data.

Stage Pose X Double The X component of the stage position used to collect the
correspondence data.

Stage Pose Y Double The Y component of the stage position used to collect the
correspondence data.

Outputs
Name Type Description

FeatureCrspsMCamerasNPoses CogFeatureCrspsMCamerasNPoses The accumulated of FeatureCrsps for all cameras
at multi stage positions

Stage Pose Collection CogTransform2DRigid[] The accumulated stage pose data.

Properties

Calibration Target Type:

l Separate Calibration Plates

Indicates that a separate calibration target is being used for each camera. In this mode, the checkerboard is used to
compute lens and perspective distortions, but the motion device is used to compute the relative and absolute
positions of each camera in Home2D. The accuracy of this computation depends upon the accuracy and extent of the
rotation during the calibration process. The user should use this option only if a single calibration target cannot be
used for the application.

274

General Tool Block

l Single Calibration Plate

Indicates that a single calibration target is being used to hand-eye calibrate the multiple cameras. Following
calibration, all cameras would have the ability to map their features to a common Plate2D. The relative position of the
cameras are estimated accurately. The absolute cameras positions in Home2D is influenced by the accuracy and
extent of rotation during the hand-eye calibration process.

275

General Tool Block

l Tracked Part Dense Features

Used when the number of fiducial tracked during the hand-eye calibration process is more than three.

l Tracked Part Sparse Features

Used when the number of fiducial marks is at-least one but less than three.

Calibration Loop
This block supports calibration of a motion stage. When executed in a sequence, it computes a set of predetermined poses
for the motion stage and for each computed pose calls a script point. This script point is expected to execute a task that
extracts the features from a calibration plate.

When performing hand-eye calibration it is recommended that the stage undergoes two sets of motion. The first set should
translate the stage to various points on a rectangular grid. The second set should rotate the stage to various points on a
circular grid. This block has a set of properties that control the position and the number of points on the rectangular grid and
circular grid.

276

General Tool Block

The purpose of this block is to generate poses for these points, in the following manner:

l Before translating the stage to points on the rectangular grid, the stage is first rotated to the mean rotational position
for the circular grid.

l Before rotating the stage to points on the circular grid, the stage is first translated to the center of the rectangular grid.

l When moving along the rectangular grid, the stage will go to the various points on the grid in a serpentine fashion.

General Information
Class name: CalibrationLoopBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Properties

Name Type Description
Theta Range
Start

Double Get/Set the starting position for the Theta axis (in degrees), used when generating stage poses on
the circular grid.

277

General Tool Block

Name Type Description
Theta Range
End

Double Get/Set the ending position for the Theta axis (in degrees), used when generating stage poses on
the circular grid.

Number of
Steps on
Theta axis

Double Get/Set the number of samples when rotating the stage along the Theta axis of the circular grid.
This property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the
setter value is less than one.

X Range
Start

Double Get/Set the starting position for the X axis (in mm), used when generating stage poses on the
circular grid.

X Range End Double Get/Set the ending position for the X axis (in mm), used when generating stage poses on the
circular grid.

Number of
Steps on X
axis

Double Get/Set the number of samples when rotating the stage along the X axis of the circular grid. This
property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the setter
value is less than one.

X Range
Start

Double Get/Set the starting position for the Y axis (in mm), used when generating stage poses on the
circular grid.

X Range End Double Get/Set the ending position for the Y axis (in mm), used when generating stage poses on the
circular grid.

Number of
Steps on X
axis

Double Get/Set the number of samples when rotating the stage along the Y axis of the circular grid. This
property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the setter
value is less than one.

Cancel
Requested

Boolean Gets/sets if a cancel was requested. If this property is set to true before or during execution, the
looping is cancelled.

These ranges and steps can also be set on Calibration Loop UI control.

Accumulate Features Script
This block supplies the script point "AccumulateFeatures". During execution this script point will be called for each pose in
the generated set of stage poses. The script point will be called with suitable arguments to implement a single-pose feature
extractor system.

bool AccumulateFeatures (Int32 Index, Double X, Double Y, Double Theta)
Name Type Description

Index int The zero-based iteration count in the current calibration operation. The first call to this script point
receives a zero, the second call a one, etc.

X Double The X value of stage position that was used to acquire the images in this iteration
Y Double The Y value of stage position that was used to acquire the images in this iteration
Theta Double The Theta value of stage position that was used to acquire the images in this iteration

Here is a sample code for reference:

278

General Tool Block

In case user wants to cancel the Loop in the middle, “CancelRequested” property need to be set as true via scripting, such
as:

Task Workflow
Here is a typical design for Calibration Loop：

Calibration Loop is the starting block, after getting all steps information, it generates a for-loop which iterate all points in
shortest path of stage move. At each point, it calls Accumulate Features scripting, in which stage will be moved to desired
position, then camera conduct image acquisition, feature is extracted by vision and all those features are collected before
moving to the next point. Step 2-8 runs again for the next point and so on. Step 2-8 are normally done in a separate task.

After all points’ features are collected, then it’s time to run the Hand-eye Calibration.

279

General Tool Block

Checker Grid Feature Extractor
This block extracts the calibration features from a checkerboard calibration plate. It can be configured to extract calibration
features from the images of multiple cameras, where the number of cameras is configured via a property. This block is a
Cognex Designer wrapper for the VisionPro CogCalibFeatureExtractorCheckerboard operator and implements most of its
functionality.

This feature extractor operates with a checkerboard style calibration plate consisting of a grid of alternating light and dark
checkers. For each image of a checkerboard, the extractor locates the vertices of checkers in the image and generates a
correspondence of vertex locations in image with vertex locations on the physical calibration plate coordinate system
(Plate2D, see the remarks section of
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardLabelModeConstants in the VisionPro documentation).
The image point in the correspondence pair data will be in the selected space of the image.

The block supplies the script point "CurrentProgress". This script point will be called with suitable arguments to allow the
monitoring of the feature extraction process during execution.

General Information
Class name: CheckerGridFeatureExtractorBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Inputs
Name Type Description

Command
Args

CommandArgs CommandArgs object which contains description of command for setup-wizard program. For
non-setup-wizard program, this input pin can be left as unlinked.

Cam0 ICogImage The image from camera 0.
Additional pins of this type are added based on the Number Of Cameras property.

Outputs
Name Type Description

FeatureCrspsMCameras CogFeatureCrspsMCameras The correspondence pair data extracted from all the input images.
Operation Cancelled Boolean True if the feature extraction was cancelled during execution.
PelRectsMCameras Rectangle[] The bounds of the input image, by default each rectangle is of the

same size of image it refers to.
FeatureGraphics0 ICogRecord CogRecord Creator on page 306 which shows all vertexes of tiles

extracted by CheckerGridFeatureExtractor, Additional pins of this
type are added based on the Number Of Cameras property.

Definition of FeatureCrsp
Each point has two sets of coordinates: Raw2D coordinates(x,y) and Plate2D coordinates(X,Y), these two sets of
coordinates then are stored in a structure called FeatureCrsp.

280

General Tool Block

One point is represented by one FeatureCrsp, a group of points in one image then are called FeatureCrsps.

Multi cameras’ FeatureCrsps there after is named as FeatureCrspsMCameras, and if that Multi cameras has features
extracted at different stage locations, then all the features are grouped as FeatureCrspsMCamerasNPoses

For Checker Grid Feature Extractor, it extracts features from multi cameras at a certain position, so the major output is a
FeatureCrspsMCameras object, which later is accumulated by Cal Plate Feature Accumulator.

281

General Tool Block

Properties

The properties are described below in different groups:

l Calibration Plate Parameters

Name Type Description
OriginX Double Gets/sets the the x value of the designated origin to be used for labeling of returned feature points.

The vertex closest to point (OriginX, OriginY) will be used as the origin for point correspondence when
Label Mode is CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin.
When not operating in CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin mode,
this property is ignored.

OriginY Double Gets/sets the the x value of the designated origin to be used for labeling of returned feature points.
The vertex closest to point (OriginX, OriginY) will be used as the origin for point correspondence when
Label Mode is CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin.
When not operating in CogCalibFeatureExtractorCheckerboardLabelModeConstants.UseOrigin mode,
this property is ignored.

Physical
Grid
Pitch X

Gets/sets the physical units of grid pitch along the x-axis of the calibration plate coordinate system
(Plate2D, see the remarks section of
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardLabelModeConstants). It is the
distance between any two adjacent checker vertices whenever the line joining them is parallel to the x
axis of Plate2D.
Throws System.ArgumentOutOfRangeException: The value is less than or equal to 0.

282

General Tool Block

Name Type Description
Physical
Grid
Pitch Y

Gets/sets the physical units of grid pitch along the y-axis of the calibration plate coordinate system
(Plate2D, see the remarks section of
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardLabelModeConstants). It is the
distance between any two adjacent checker vertices whenever the line joining them is parallel to the y
axis of Plate2D.
Throws System.ArgumentOutOfRangeException: The value is less than or equal to 0.

The figure below indicates the meaning of Origin, PitchX, and PitchY:

l Feature Extraction Parameters

Name Type Description
Algorithm Cognex.VisionPro.CalibFix.

CogCalibCheckerboardFeatureFinderConstants
Please refer to Feature Extractor

Label
Mode

Cognex.VisionPro.CalibFix.
CogCalibCheckerboardFiducialConstants

Please refer to Feature Extractor

Need
both
checkers

Boolean Gets/sets the flag to indicate whether the tool should find only
vertices shared by two interior light checkers. When set to
true, the extractor will find only those vertices belonging
simultaneously to two interior light checkers. An interior
checker is one that does not touch the image boundary or the
border of the calibration plate. When set to false, the extractor
will attempt to find all vertices of all interior light checkers.

Precision
Threshold

Double Gets/sets the threshold for discarding vertices with excessive
positional uncertainty, specified in pixels. Due to noise and
distortion, there are errors in the computed vertex positions.
The algorithm internally estimates the position uncertainty for
all found vertices, and excludes those from the final result
whose position uncertainty estimates exceed the threshold
specified here. Throws
System.ArgumentOutOfRangeException: If the input value is
less than 0 in the setter.

Uniform
Lighting

Boolean Gets/sets the flag to indicate whether the checkerboard is
expected to be uniformly illuminated in the run-time images.
When set to true, the extractor expects the light checkers to
be uniformly illuminated, and uses an efficient technique for
finding the vertices which can improve the speed
performance. However, if in fact the illumination is not
uniform, this technique may not find certain vertices that are
severely affected by the non-uniform lighting. When set to
false, the tool performs better in presence of severe non-
uniform lighting, and may find more vertices in these cases.

283

General Tool Block

l Parameters

Name Type Description
Number
of
Cameras

Int32 Sets/Gets the number of cameras supplying images to the feature extractor. This property has a minimum
value of MinNumberOfCameras (1) and a maximum value of MaxNumberOfCameras (16). The number of
CamN and FeatureGraphicsN pins are each equal to the NumberOfCameras property. The available pins
change immediately upon a change of this property. Throws System.ArgumentOutOfRangeException: If
the setter value is less than MinNumberOfCameras or greater than MaxNumberOfCameras

l Runtime Parameters

Name Type Description
Cancel
Requested

Boolean Gets/sets if a cancel was requested. If this property is set to true before or during execution, the
feature extraction is cancelled.

l Speed Up Parameters

Name Type Description
Do
Checkers
Cover
FOV

Boolean Gets/sets whether the checkers are expected to entirely cover the field of view. Note that the purpose
of this property is to improve speed performance when the checker coverage is known. This property
should only be set to true if it is known beforehand that the checkers will cover the entire image for
each camera at each pose. Note that Do Checkers Cover FOV is only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive.

Minimum
Checker
Angle

Double Gets/sets the minimum expected angle of checker orientations. Note that if the new value is larger
than Maximum Checker Angle, then Maximum Checker Angle will be changed to the new Minimum
Checker Angle. The purpose of Minimum and Maximum Checker Angle is to improve speed
performance when the checker orientations are known. Minimum and Maximum Checker Angle are
only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive.

Maximum
Checker
Angle

Double Gets/sets the maximum expected angle of checker orientations. Note that if the new value is smaller
than Minimum Checker Angle, then Minimum Checker Angle will be changed to the new Maximum
Checker Angle. The purpose of Minimum and Maximum Checker Angle is to improve speed
performance when the checker orientations are known. Minimum and Maximum Checker Angle are
only used when Algorithm is
Cognex.VisionPro.CalibFix.CogCalibFeatureExtractorCheckerboardAlgorithmConstants.Exhaustive

Current Progress Script
Current Progress script provides information on the current progress of feature extraction

CurrentProgress(Cognex.VisionPro.CalibFix.CogCalibFeaturesExtractedEventArgs CurrentProgress)

Script point called periodically during the execution of feature extraction.

Published Methods
Void ResetBlock()

This method resets this block to a default state.

Handeye Calibrator
The HandEye Calibrator block does the work of computing hand eye calibration. This block is a Cognex Designer wrapper
for the VisionPro CogHandEyeCalibrator operator and it implements most of its functionality. This block can be configured to
perform hand-eye calibration on multiple cameras using the Number Of Cameras property.

The VisionPro CogHandEyeCalibrator has two overloads for the execute function:

284

General Tool Block

l The first overload computes hand-eye calibration results using the corresponding point pairs and stage poses.

l The second overload recomputes the hand-eye calibration results using corresponding point pairs and stage poses,
and reusing each camera’s Raw2DFromCamera2D from a previous hand-eye calibration result.

This block implements functionality to support only the first overload.

General Information
Class name: MotionStageValidatorBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Inputs
Name Type Description

Calibration Image PelRects Rectangle[] The pelrects used to extract the correspondence
point pairs. These pelrects are used to define the
camera coordinate system (i.e. Camera2D) to be
at the center of the pelrect.
There should be one pelrect for each camera.
There is no relationship between the pelrects of
two separate cameras.

Calibration Results CogHandEyeCalibrationResults Contains a list of CogHandEyeCalibrationResult
objects, one for each camera.

FeatureCrspsMCamerasNPoses CogFeatureCrspsMCamerasNPoses The correspondence point pairs to be used for
calibration.

Stage Pose Collection CogTransform2DRigid[] The sequence of
UncorrectedHome2DFromStage2D poses that
were used to move the stage when the images
that provided the correspondence point pairs were
acquired.

Outputs
Name Type Description

Calibration Timed Out Booleon This output will be true if the calibration operator times out.
Calibration Results CogHandEyeCalibrationResults Handeye Calibration results which contains all spaces

transforms and stage validation information
Stage Rotation
Compensation Coeffs

CogTransform2DRigid[]

Calibration Result Cam0 CogHandEyeCalibration Contains the calibration result for camera 0.
Additional pins of this type will be available based on the
Number Of Cameras property.

285

General Tool Block

Properties

These properties are described as below in two groups:

l Calibration Parameters

Name Type Description
Theta Scaling
Compensation

Boolean

Home2D Unit
Length
Reference

Cognex.VisionPro.CalibFix.
CogHandEyeHome2DUnitLengthReferenceConstants

Specifies how unit length in Home2D is
established. Refer to the VisionPro
CogHandEyeCalibrator documentation for more
details

Is Moving
Camera

Boolean Indicates if the cameras are moving or stationary.
Refer to the VisionPro CogHandEyeCalibrator
documentation for more details.

Lens
Distortion
Mode

Cognex.VisionPro.
CogLensDistortionModelConstants

The optical distortion model to be used in
computing Raw2DFromCamera2D. Refer to the
VisionPro CogHandEyeCalibrator documentation
for more details.

Minimum
Rotation Span

Double The minimum required rotation angle span in
degrees among all input motion-x-y-theta poses
for motion capabilities that allow rotation. When
executed, this block will throw an exception if the
rotation angle span among all input motion-x-y-
theta poses is less than this minimum requirement.
Refer to the VisionPro CogHandEyeCalibrator
documentation for more details.

Motion
Capability

Cognex.VisionPro.CalibFix.
CogHandEyeMotionCapabilityConstants

The capability of the motion rendering device to
render the motion of the calibration target. Refer to
the VisionPro CogHandEyeCalibrator
documentation for more details.

286

General Tool Block

l Parameters

Name Type Description
Number of
Cameras

Int32 Sets/Gets the number of cameras supplying images to the feature extractor. This property has a
minimum value of MinNumberOfCameras and a maximum value of MaxNumberOfCameras. The
total number of Calibration Result CamN pins is equal to the Number Of Cameras property. The
number of pins changes immediately upon a change to this property. Throws
System.ArgumentOutOfRangeException: If the setter value is less than MinNumberOfCameras or
more than MaxNumberOfCameras

Timeout
Enabled

Boolean Enable or disable timeout for calibration. Refer to the VisionPro CogHandEyeCalibrator
documentation for more details.

Timeout
Value

Double The calibration time out value in milliseconds. Refer to the VisionPro CogHandEyeCalibrator
documentation for more details.

Calibration
Target
Type

Recalibrate Boolean The target that is used to generate the features needed to perform hand-eye calibration.

Published Methods
Void ResetBlock()

This method resets this block to a default state.

Stage Validator
The Motion Stage Validator Block performs motion stage validation. The purpose of this process is to verify that a stage
moves to its commanded poses (X, Y, Theta), and to characterize certain types of systematic errors in the observed motion.
This block is a Cognex Designer wrapper for the VisionPro CogMotionStageValidator operator and implements most of its
functionality.

The VisionPro CogMotionStageValidator uses a fully configured CogHandEyeCalibrator object during execution. This block
constructs a CogHandEyeCalibrator internally, but exposes its properties as Cognex Designer properties in order to help the
user to configure it. All the properties of the CogHandEyeCalibrator object are exposed by the Motion Stage Validator Block
except the MotionCapability property. The MotionCapability is inferred from the stage poses that are supplied as input.

General Information
Class name: HandEyeCalibrationBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

287

General Tool Block

Inputs
Name Type Description

Calibration Image PelRects System.Drawing.Rectangle[] The pelrects used to extract the
correspondence point pairs.
These pelrects are used to define
the camera coordinate system (i.e.
Camera2D) to be at the center of
the pelrect. There should be one
pelrect for each camera. There is
no relationship between the
pelrects of two separate cameras.

FeatureCrspsMCamerasNPose
s

Cognex.VisionPro.CogFeatureCrspsMCamerasNPos
es

The correspondence point pairs to
be processed.

Stage Pose Collection Cognex.VisionPro.CogTransform2DRigid[] The sequence of
UncorrectedHome2DFromStage2
D poses that were used to move
the stage when the images that
provided the correspondence
point pairs were acquired.

Outputs
Name Type Description

Validation
Timed Out

Boolean This output will be true if the validation
operation times out.

Validation
Result

Cognex.VisionPro.CalibFix.CogMotionStageValidationResult Contains the results of the motion stage
validation process.

Properties

These properties are described as below in two groups:

l Calibration Parameters

288

General Tool Block

Name Type Description
Home2D Unit
Length
Reference

Cognex.VisionPro.CalibFix.
CogHandEyeHome2DUnitLengthReferenceConstants

Specifies how unit length in Home2D is
established. Refer to the VisionPro
CogHandEyeCalibrator documentation for more
details

Is Moving
Camera

Boolean Indicates if the cameras are moving or stationary.
Refer to the VisionPro CogHandEyeCalibrator
documentation for more details.

Lens
Distortion
Model

Cognex.VisionPro.
CogLensDistortionModelConstants

The optical distortion model to be used in
computing Raw2DFromCamera2D. Refer to the
VisionPro CogHandEyeCalibrator documentation
for more details.

Minimum
Rotation Span

Double The minimum required rotation angle span in
degrees among all input motion-x-y-theta poses
for motion capabilities that allow rotation. When
executed, this block will throw an exception if the
rotation angle span among all input motion-x-y-
theta poses is less than this minimum
requirement. Refer to the VisionPro
CogHandEyeCalibrator documentation for more
details.

l Parameters

Name Type Description
Number
of
Cameras

Int32 Sets/Gets the number of cameras supplying images to the feature extractor. This property has a
minimum value of MinNumberOfCameras and a maximum value of MaxNumberOfCameras. Throws
System.ArgumentOutOfRangeException: If the setter value is less than MinNumberOfCameras or more
than MaxNumberOfCameras

Timeout
Enabled

Boolean Enable or disable timeout for validation. Refer to the VisionPro CogMotionStageValidator
documentation for more details.

Timeout
Value

Double The validation time out value in milliseconds. Refer to the VisionPro CogMotionStageValidator
documentation for more details.

Published Methods
Void ResetBlock()

This method resets this block to a default state.

UltraCalibration Loop
The UltraCalibration process models non-linearities in the mapping from commanded motion device pose to actual motion
device pose. The calibration process is very similar to the Hand-eye calibration process. The UltraCalibrationLoopBlock
serves the same purpose as the HandEyeCalibrationLoopBlock. It has a set of properties that specify the motion range of the
motion device, and properties that influence the number of poses for the calibration target. During the calibration process the
block enables the vision application to move the calibration target to random positions within the specified range. The
recommended X, Y, Theta Step for UltraCalibration is 4-7.

289

General Tool Block

General Information
Class name: UltraCalibrationLoopBlock

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Properties

Name Type Description
Theta Range
Start

Double Get/Set the starting position for the Theta axis (in degrees), used when generating stage poses on
the circular grid.

Theta Range
End

Double Get/Set the ending position for the Theta axis (in degrees), used when generating stage poses on
the circular grid.

Number of
Steps on
Theta axis

Double Get/Set the number of samples when rotating the stage along the Theta axis of the circular grid.
This property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the
setter value is less than one.

X Range
Start

Double Get/Set the starting position for the X axis (in mm), used when generating stage poses on the
circular grid.

X Range End Double Get/Set the ending position for the X axis (in mm), used when generating stage poses on the
circular grid.

Number of
Steps on X
axis

Double Get/Set the number of samples when rotating the stage along the X axis of the circular grid. This
property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the setter
value is less than one.

X Range
Start

Double Get/Set the starting position for the Y axis (in mm), used when generating stage poses on the
circular grid.

290

General Tool Block

Name Type Description
X Range End Double Get/Set the ending position for the Y axis (in mm), used when generating stage poses on the

circular grid.

Number of
Steps on X
axis

Double Get/Set the number of samples when rotating the stage along the Y axis of the circular grid. This
property has a minimum value of 1. Throws System.ArgumentOutOfRangeException: If the setter
value is less than one.

Cancel
Requested

Boolean Gets/sets if a cancel was requested. If this property is set to true before or during execution, the
looping is cancelled.

These ranges and steps can also be set via Calibration Loop UI control.

Accumulate Features Script
This block supplies the script point "AccumulateFeatures". During execution this script point will be called for each pose in
the generated set of stage poses. The script point will be called with suitable arguments to implement a single-pose feature
extractor system.

bool AccumulateFeatures (Int32 Index, Double X, Double Y, Double Theta)
Name Type Description

Index int The zero-based iteration count in the current calibration operation. The first call to this script point
receives a zero, the second call a one, etc.

X Double The X value of stage position that was used to acquire the images in this iteration
Y Double The Y value of stage position that was used to acquire the images in this iteration
Theta Double The Theta value of stage position that was used to acquire the images in this iteration

In case user wants to cancel the Loop in the middle, “CancelRequested” property need to be set as true via scripting, such
as:

Image Corrector

Run Calib Checkerboard Corrector
The RunCalibCheckboardCorrector block holds a VisionPro CogCalibCheckerboardRunParams and refers to a
TrainCalibCheckboardCorrector block. When executed, this block runs the referenced image corrector using the selected
parameters.

The referred TrainCalibCheckboardCorrector is selected in "Corrector" property.

291

General Tool Block

Here is an example of input raw image and its corrected image:

l Input image:

l Output image with graphics:

292

General Tool Block

Note: In alignment application, it is not recommended to install camera at such a tilted angle which cause big
perspective distortion in raw image as this will reduce the alignment accuracy.

General Information
Class name: RunCalibCheckerboardCorrector

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Inputs
Item Type Description

Image ICogImage Raw image acquired by that specific camera

Command Args CommandArgs Command information

Outputs
Item Type Description

Corrected Image ICogImage Corrected Image with Plate2D as default space

Properties
Name Type Description

Selected
Corrector

String Get/set the corrector (an instance of a TrainCalibCheckerboardCorrector block, generally in another
sequence) to run when this block is executed.

Unfilled
Pel Value
Enable

Boolean Get/set the unfilled pel value behavior. If true, unfilled pixels in the corrected image will be initialized
using UnfilledPelValue. Otherwise unfilled pixels will be uninitialized. See the VisionPro
CogCalibCheckboardRunParams.UnfilledPelValueEnabled property.

Unfilled
Pel Value

Int32 Get/set the unfilled pixel value. If UnfilledPelValueEnable is true, unfilled pixels in the corrected
image will be set to this value. See the VisionPro
CogCalibCheckerboardRunParams.UnfilledPelValue property.

293

General Tool Block

Run Corrector
The RunCorrector block holds a VisionPro CogCalibImageCorrectorRunParams and refers to a TrainCorrector block. When
executed, this block runs the referenced image corrector using the selected parameters.

The referred TrainCorrector is selected in "Corrector" property.

General Information
Class name: RunCorrector

Namespace: Cognex.Designer.AlignPlus.ImageCorrector

Assembly: Cognex.Designer.AlignPlus.ImageCorrector.dll

Inputs
Item Type Description

Image ICogImage The input image to correct

Outputs
Item Type Description

CorrectedImage ICogImage The output corrected image

Properties
Name Type Description

Selected
Corrector

String Get/set the corrector (an instance of a TrainCorrector block, generally in another sequence) to run
when this block is executed.

294

General Tool Block

Name Type Description
Is
Moving
Camera

Boolean Get/set if the corrector should be run for a moving camera configuration. If false, specifies a stationary
camera configuration. This flag must match the IsMovingCamera property of the SelectedCorrector. If it
does not, an exception will be thrown when this block is executed. If true, this block will show input
pins for X, Y and Theta. These pins must be connected to inputs representing the current stage
position.

Unfilled
Pel
Value
Enable

Boolean Get/set the unfilled pel value behavior. If true, unfilled pixels in the corrected image will be initialized
using UnfilledPelValue. Otherwise unfilled pixels will be uninitialized. See the VisionPro
CogCalibImageCorrectorRunParams.UnfilledPelValueEnabled property.

Unfilled
Pel
Value

Int32 Get/set the unfilled pixel value. If UnfilledPelValueEnable is true, unfilled pixels in the corrected image
will be set to this value. See the VisionPro CogCalibImageCorrectorRunParams.UnfilledPelValue
property.

Train Calib Checkerboard Corrector
The TrainCalibCheckerboardCorrector block holds a VisionPro CogCalibCheckerboardTool. When executed, this block
runs checkerboard calibration on input image and outputs the corrected image as well as feature graphics.

The input image here must be image from one of the following calibration plates:

l StandardRectangles

l DataMatrix

l DataMatrixWithGridPitch

l DotGridAxes

General Information
Class name: TrainCalibCheckerboardCorrector

Namespace: Cognex.Designer.AlignPlus.Calibration

Assembly: Cognex.Designer.AlignPlus.Calibration.dll

Inputs
Item Type Description

Checkerboard Image ICogImage An image of the calibration target

Command Args CommandArgs Command for current task

Outputs
Item Type Description

Corrected Checkerboard
Image

ICogImage After training, the result of running image correction on the checkerboard
image.

Extracted Features ICogRecord Features graphics extracted by CogCalibCheckerboardTool.

Here is an example of input raw image and its corrected image:

295

General Tool Block

l Input image:

l Output image with graphics:

Note: In alignment application, it is not recommended to install camera at such a tilted angle which cause big
perspective distortion in raw image as this will reduce the alignment accuracy.

296

General Tool Block

Properties

These properties are described below in different groups:

297

General Tool Block

l Calibration Origin Adjustment

Name Type Description

Corrected
Pixel X
Axis
Alignment
Source

Cognex.VisionPro.CalibFix.
CogCalibCheckerboardAdjustmentSpace
Constants

Get/set the Corrected Pixel X Axis Alignment Source.
l Plate(RawCalibred): during correction the image
pixels will be rotated such that in the corrected
image, the Home2D X-axis is oriented in the same
direction as the corrected image X-axis (# space).

l Raw(Uncalibred): there is no effect during image
correction. Any additional rotation specified by the
CorrectedPixelRotation property will be applied after
this X-axis alignment is complete.

If this property is changed, this corrector will become
untrained.

Corrected
Pixel
Match
Handedn
ess
Source

Cognex.VisionPro.CalibFix.
CogCalibCheckerboardAdjustmentSpace
Constants

Specifies whether the output handedness is the same in
Raw2D space(Uncalibrated space), or in Plate2D space
(RawCalibrated space).

Corrected
Pixel
Rotation
(degrees)

Double Get/set the rotation, in degrees, of the corrected image. This
property allows you to rotate the image during correction.
See the VisionPro
CogCalibCheckboardTool.Calibration.OwnedWarpParams.
WarpRotation property. If this property is changed, this
corrector will become untrained.

Corrected
Pixel
Handedn
ess Swap

Boolean Get/set the handedness of the corrected space. If this
property is changed, this corrector will become untrained.

298

General Tool Block

l Feature Extraction

Name Type Description

Calibrati
on Plate
Grid
Spacing
X

Double Gets/sets the physical units of grid pitch
along the x-axis of the raw calibrated
space (see the Calibration and Fixturing
section of VisionPro documentation). It
is the distance between any two
adjacent checker vertices whenever the
line joining them is parallel to the x axis
of calibration plate.

Calibrati
on Plate
Grid
Spacing
Y

Double Gets/sets the physical units of grid pitch
along the y-axis of the raw calibrated
space (see the Calibration and Fixturing
section of VisionPro documentation). It
is the distance between any two
adjacent checker vertices whenever the
line joining them is parallel to the y axis
of calibration plate.

Feature
Finder

Cognex.VisionPro.CalibFix.CogCalibCheckerboardFeatureFin
derConstants

Gets/Sets the algorithm used to find
vertices on the calibration plate (refer to
the
CogCalibCheckerboardFeatureFinderC
onstants documentation in the
VisionPro documentation).

Fiducial
Type

Cognex.VisionPro.CalibFix.CogCalibCheckerboardFiducialCo
nstants

Gets/Sets the style of fiducial mark
present on the calibration plate (refer to
the
CogCalibCheckerboardFiducialConsta
nts documentation in the VisionPro
documentation).

299

General Tool Block

l Parameters

Name Type Description

Is Trained Boolean Get if this corrector block is
currently trained.

Computation Mode Cognex.VisionPro.CalibFix.CogCalibFixComputationMo
deConstants

Gets/Sets the modes for
computing calibration and
fixturing transformations (refer to
the
CogCalibFixComputationModeCo
nstants documentation in the
VisionPro documentation).

DOFs to Compute Cognex.VisionPro.CalibFix.CogCalibCheckerboardDOF
Constants

This enumeration specifies which
degrees of freedom will be
allowed when computing the
best-fit linear transformation
between the uncalibrated points
and the raw calibrated points.
It is used only when the
ComputationMode is linear.

PlateHandednessFli
pped

Boolean Specifies the handedness of the
calibrated space.

l False: the calibrated
space will have the same
handedness as the raw
(unadjusted) calibrated
space.

l True: it will have the
opposite handedness.

300

General Tool Block

l Warping

Name Type Description

Use
Destination
Rectangle

Boolean Get/set a boolean indicating if the "DestinationRectangle" properties will be used during
training. The destination rectangle specifies which pixels will be present in the corrected
image. The "DestinationRectangle" properties are in '.' space. See the VisionPro
CogCalibCheckerboardTool.Calibration.OwnedWarpParams.WarpDestinationRectangle
property. If UseDestinationRectangle is false (or not connected), all of the pixels in the
corrected image will be output. Changes to this or any of the "DestinationRectangle"
properties will cause this corrector to become untrained.

Destination
Rectangle
X

Double Get/set the X origin of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Y

Double Get/set the Y origin of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Width

Double Get/set the width of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Height

Double Get/set the height of the destination rectangle. See the UseDestinationRectangle property.

Corrected
Pixel
Scaling

Double Get/set an additional scaling factor to be applied during correction. See the VisionPro
CogCalibCheckerboardTool.Calibration.OwnedWarpParams.WarpScaling property. If this
property is changed, this corrector will become untrained.

Max Error
In Pixels

Double Get/set the maximum error allowed during image correction, measured in pixels of the
training image. See the VisionPro
CogCalibCheckerboardTool.Calibration.OwnedWarpParams.WarpMaxErrorInPixels
property.

Methods
Void Uncalibrate()

Untrains this image corrector. This function has no effect if the corrector is already untrained.

Train Corrector
The TrainCorrector block holds a VisionPro CogCalibImageCorrector. When executed, this block uses its inputs to train the
image corrector.

To run a trained image corrector, use the RunCorrector block.

301

General Tool Block

General Information
Class name: TrainCorrector

Namespace: Cognex.Designer.AlignPlus.ImageCorrector

Assembly: Cognex.Designer.AlignPlus.ImageCorrector.dll

Inputs
Item Type Description

HandEyeResult CogHandEyeCalibrationResult Hand-eye Calibration result for specific camera

TrainingImage ICogImage A reference image to use during training.

Untrain Boolean If true, this corrector will be untrained when executed in a sequence. If
false or unconnected, this corrector will be trained when executed.

Outputs
Item Type Description

CorrectedTrainingImage ICogImage After training, the result of running the image corrector on the TrainingImage.

302

General Tool Block

Properties

These properties are described below in different groups:

303

General Tool Block

l Corrected Pixel Adjustment

Name Type Description

Corrected
Pixel X Axis
Alignmen
Source

Cognex.Designer.AlignPlus.ImageCorrector.
CorrectorXAxisAlignmentSource

Get/set the source whose X axis will be aligned to the
X axis of the corrected image

l Plate: during correction the X axis of the
corrected image is aligned to the X axis of the
calibration plate

l Raw: During correction the X axis of the
corrected image is aligned to the X axis of the
raw image

l Stage: During correction the X axis of the
corrected image is aligned to the X axis of the
stage

If this property is changed, this corrector will become
untrained.

Corrected
Pixel Match
Handedness
Source

Cognex.Designer.AlignPlus.ImageCorrector.
CorrectorMatchHandednessSource

Allows the specification of the coordinate system
whose handedness will be the same as the
handedness of the corrected image.

l Raw- The corrected image will have the same
handedness as the raw image (Raw2D)

l Plate - The corrected image will have the same
handedness as the calibration plate (Plate2D)

l Stage - The corrected image will have the
same handedness as the stage (Stage2D)

Corrected
Pixel
Rotation
(degrees)

Double Get/set the rotation, in degrees, of the corrected
image. This property allows you to rotate the image
during correction. See the VisionPro
CogCalibImageCorrector.CorrectedPixelRotation
property. If this property is changed, this corrector will
become untrained.

Corrected
Pixel
Scaling

Double Get/set an additional scaling factor to be applied
during correction. See the VisionPro
CogCalibImageCorrector.CorrectedPixelScaling
property. If this property is changed, this corrector will
become untrained.

Corrected
Pixel
Handedness
Swap

Boolean Get/set the handedness of the corrected space. See
the VisionPro
CogCalibImageCorrector.SwapCorrectedHandedness
property. If this property is changed, this corrector will
become untrained.

Is Trained Boolean Get if this corrector block is currently trained.

Is Moving
Camera

Boolean Get if this corrector block was trained with a moving
camera hand-eye result. Returns true if so, or false if
this block was trained with a stationary camera hand-
eye result. Returns false if this block is not trained.

Max Error In
Pixels

Double Get/set the maximum error allowed during image
correction, measured in pixels of the training image.
See the VisionPro
CogCalibImageCorrector.MaxErrorInPixels property.

304

General Tool Block

l Destination Rectangle

Name Type Description

Use
Destination
Rectangle

Boolean Get/set a boolean indicating if the "DestinationRectangle" properties will be used during
training. The destination rectangle specifies which pixels will be present in the corrected
image. The "DestinationRectangle" properties are in '.' space. See the VisionPro
CogCalibImageCorrector.DestinationRectangle property. If UseDestinationRectangle is false
(or not connected), all of the pixels in the corrected image will be output. Changes to this or
any of the "DestinationRectangle" properties will cause this corrector to become untrained

Destination
Rectangle
X

Double Get/set the X origin of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Y

Double Get/set the Y origin of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Width

Double Get/set the width of the destination rectangle. See the UseDestinationRectangle property.

Destination
Rectangle
Height

Double Get/set the height of the destination rectangle. See the UseDestinationRectangle property.

l Parameters

Name Type Description

Is Moving Camera Boolean Get if this corrector block was trained with a moving camera hand-eye result.
Returns true if so, or false if this block was trained with a stationary camera
hand-eye result. Returns false if this block is not trained.

Is Trained Boolean Get if this corrector block is currently trained.

Max Error In Pixels Double Get/set the maximum error allowed during image correction, measured in
pixels of the training image. See the VisionPro
CogCalibImageCorrector.MaxErrorInPixels property.

PerformFastCorrection Boolean When true, instead of using the corrector to correct the image, the input
image is passed without any correction. The Raw2DFromHome2D transform
in hand-eye calibration result to compute an approximate imageFromClient
transform

PlateHandednessFlipped Boolean Specifies the handedness of the Plate space.
l False: the calibrated space will have the same handedness as the
raw (unadjusted) calibrated space.

l True: it will have the opposite handedness.

StageHandednessFlipped Boolean Specifies the handedness of the Stage space.
l False: the Stage space will have the same handedness as the raw
(unadjusted) calibrated space.

l True: it will have the opposite handedness.

Methods
Void Untrain()

Untrains this image corrector. This function has no effect if the corrector is already untrained.

305

General Tool Block

Utilities

CogRecord Creator
When executed, the CogRecordCreator block creates a VisionPro CogRecord object from an image and any number of
VisionPro CogGraphicCollections.

The graphics from all input CogGraphicCollections are added to the output CogRecord, such that this block can be used to
merge graphics from multiple sources into a single CogRecord for display. When used with no CogGraphicCollection inputs,
a CogRecord containing just the input image is created. This is commonly used to clear graphics from a display.

Here is an example to show the difference between ICogImage and ICogRecord:

ICogImage:

 ICogRecord

306

General Tool Block

CogDisplay or CogRecordDisplay on HMI can either choose ICogImage or ICogRecord to display, this can be customized
by changing Display’s “Source” property.

General Information
Class name: CogRecordCreatorBlock

Namespace: Cognex.Designer.AlignPlus.Utils

Assembly: Cognex.Designer.AlignPlus.Utils.dll

Inputs
Name Type Description

Image ICogImage The input image
Graphics CogGraphicCollection A CogGraphicCollection to add to the output record.

Outputs
Name Type Description

OutputRecord ICogRecord The output CogRecord object

Properties
Additional pins of this type are created based on the Number of Graphic Inputs property.

307

General Tool Block

Name Type Description
Number
of
Graphic
Inputs

Int32 Set/get the number of input graphic collections.
This block will create an input pin for each graphic collection. Must be >= 0 and <= 16. The default is 1. If
the value on a graphic input pin is non-null, then the given graphic collection is added to the output record.
If the pin is unconnected or has a value of null, then it does not contribute to the output record.
Throws System.ArgumentOutOfRangeException: If the setter value is less than one or greater than 16

Dictionary Composer
Dictionary Composer is a tool block that compiles a set of input data into a Dictionary object.

The input pin names, quantity, and types need to be configured by user, those input pin names will be Keys in the output
dictionary, their values will be the data under corresponding Keys.

Double click this block to enter into edit mode and add input pins:

308

General Tool Block

After editing, those elements will appear as input pins ready to be connected to data sources.

Publisher
Publisher compiles multiple input data into a CogDictionary object and make it public so that it can be referred by a
Subscriber in any task or visited in any script.

Here are three major features of Publisher:

1. Publisher doesn’t generate data by itself, but publicize other’s outputs.

2. Publisher’s data is saved as a dictionary named “SavedData”.

309

General Tool Block

3. Publisher’s data can be accessed through scripting or Subcriber.

Result Logger Block
Result Logger Block feed data and file name to Multifile Log Writer to be logged as CSV file.

Inputs
Name Type Description

ErrorMsg string error message
Results CogDictionary Data needs to be written to CSV file, organized in CogDictionary structure

Properties
A Multifile Log Writer component need to be chosen as its server in the property.

In LogFormatCallback, Result Logger Block can define the file name and the data to be written into that CSV file. Here is a
sample code:

310

General Tool Block

Here is an example of the results in CSV file:

TimestampU
TC

ErrorMs
g

Absolute
StageMotio

nX

Absolute
StageMotio

nY

AbsoluteStage
MotionThetaDegre

es

Relative
StageMotio

nX

Relative
StageMotio

nY

RelativeStageMoti
on

ThetaDegrees
20200215
11:49:53.913 2.163 -4.545 0.014 2.163 -4.545 0.014

20200215
12:21:02.782 2.163 -4.545 0.014 2.163 -4.545 0.014

Subscriber
Subscriber is a tool block that refers to specific Publisher and generate the output pins which are the same with the referred
Publisher’s input pins. Subscriber and its referred Publisher does not need to be in the same task.

Here is an example of how Subscriber works:

1. PublisherA publishes a result data in TaskA

311

General Tool Block

2. Subscriber in TaskB refers to PulbisherA, such that it got the result data passed over as an output.

One Publisher can have multiple Subscribers or no Subscriber, Whereas Subscriber has to have one Publisher referred.

Publisher and Subscriber are convenient to share data among tasks as no tags need to be created to pass those data.

Tags Composer
Tags Composer compiles elements added by user together and outputs a CogDictionary object, each element is considered
as a tag within Tag Composer. These tags' values can be read and written in scripts, or by HMI controllers that have the
compatible data type.

312

General Tool Block

Double click this block to enter edit mode and add tag elements. The element can be any type.

After editing, the block has no change in appearance.

Here are two examples of how a Tag Composer is being used:

1. Change tag element in script:

$Tasks.Task.TagsComposer.X = 9.923;

313

General Tool Block

2. Refer the element in Text property of a text box:

Note: Once a new Tag Composer is used, it's TagValues should be added and saved in a recipe. Otherwise, its data
will get lost after the program is closed.

314

General Tool Block

How To

How To ... Acquire

How to add 3rd party acquisition plugin
Besides Cognex CIC cameras and other VisionPro supported GigE cameras, AlignPlus also supports 3rd party camera
image acquisition. However, the prerequisite is that 3rd party SDK to be installed, and specific acquisition plugins to be
manually placed in a given location before launching AlignPlus program.

Follow the steps below to add the 3rd party acquisition plugin:

1. Install the camera's SDK (Please contact Cognex engineer for specific version of the SDK that goes with the
acquisition plugin)

2. Copy the camera's acquisition plugin files to
"C:\ProgramData\Cognex\Designer\Plugins\Cognex\AlignPlusTemplateApplication\3rdCamera\Current". Cognex
Designer will only load the 3rd party acquisition plugins from this folder on start-up (Please contact Cognex engineer
to get these acquisition plugin files).

If certain camera brand is not needed, you can move its plugin files to
"C:\ProgramData\Cognex\Designer\Plugins\Cognex\AlignPlusTemplateApplication\3rdCamera\Database", wherein
plugins will be ignored by Designer.

3. Add "disableCameraScan" launch option to Designer’s shortcut to make Designer exclude the default VisionPro
acquisition function and enable the 3rd party acquisition functions.

Note: For USB3 and high-speed cameras, Cognex recommends the use of the 3rd party acquisition plugin for
optimal performance.

315

How To

4. Run Designer, open an AlignPlus Program and run it.

From Device drop down list on "Cameras and Lights" page under Calibration category in setup mode of the program,
you can find all the available 3rd party cameras with IP address/serial number and brand name information attached.

Note: For Basler GigE Cameras, if the brand name shown in the list is "Cognex", it means the default VisionPro
acquisition function overrides Basler's acquisition plugin. If it shows "Balser" instead, it indicates that Basler's
acquisition plugin is taking effect.

How To ... Control Devices

How to command stage to move
Before a task starts image acquisition, the stage should move to its target pose first. The control of this movement could be
done by an external motion controller before it calls the task(motion guided) or done by the vision system which commands
the stage to move before image acquisition starts(vision guided). This topic will walk through how the vision system
commands the stage to move and waits until the movement is done before starting image acquisition.

Where to command stage to move
Every image acquisition block inside a calibration or feature finding task have one corresponding call back function which
allows user to customize before or after image acquisition. These acquisition callback functions can be found in
Scripting/User Scripts/AlignPlus/Callbacks category, named as <Task Name>Callback.

316

How To

For example, the image acquisition callback function for a hand-eye calibration task "HECalib0" is "HECalib0Callback". The
content of HECalib0Callback script is implemented by configuration wizard during application generation. It performs in
three different acquisition states: InitializingAcquistion, ReadyToAcquire, and FinishedAquisition.

InitializingAcquistion
HECalib0Callback is first called with InitializingAcquisition state. In this state, the target pose of stage is extracted from
Command, and sent to "Stage0Move" script. The specific code inside "Stage0Move" to command the stage to move needs to
be implemented by an engineer according to specific stage type and communication protocol.

317

How To

The stage move script lies under Scripting/User Scripts/AlignPlus/StageMotion.

ReadyToAcquire
After the movement is done and before the camera starts to acquire image, HECalib0Callback is called again with
ReadyToAcquire state. In this state, the vision system can acquire the stage's current pose through "Stage0GetPosition"
script. "Stage0GetPosition" script here is also empty and requires an engineer to implement according to specific stage type
and communication protocol.

FinishedAcquisition
After image acquisition is done, HECalib0Callback will be called with FinishedAcquisition state, where user can add some
other custom actions if needed.

How to wait stage move done
After the vision system send out stage move command, it needs to wait until the move is done before continuing image
acquisition. A simple way to hold current vision task thread while waiting for the stage move done signal in another thread is
to use a ManualResetEvent object. Here is the diagram that shows how a ManualResetEvent object works in controlling
work flow between two threads.

318

How To

In InitlizingAcqusition state of a vision task, after stage move command is sent, the ManualResetEvent object will block
current vision task thread (without freezing the program) by callingWaitOne() event. After the requested stage finishes
moving in the handshake thread, the same ManualResetEvent object will call a Set() event, through which the suspended
vision task thread will be released, and continue to run the next line which makes ManualResetEvent object be Reset().
What follows is for the vision thread to continue image acquisition.

Below are the steps of adding and using a ManualResetEvent object.

319

How To

1. Add "System.Threading.dll" to project references and "System.Threading" to space names in System/Settings/Scripts.

2. Create a tag named HECalib.MoveDoneEvent as ManualResetEvent object.

3. Initialize the tag in OnStartup script.

$HECalib.MoveDoneEvent = new ManualResetEvent(false);

4. In InitializingAcquisition state of an image acquisition callback, set the tag to start a waiting event (it will return false if
it is timed out).

$HECalib.MoveDoneEvent.WaitOne($SystemData.HECalib.Timeout);

5. In the handshake thread, once the vision system receives the stage's move done signal, set the event.

$HECalib.MoveDoneEvent.Set();

6. Back to InitializingAcquisition state of image acquisition callback, reset the event.

$HECalib.MoveDoneEvent.Reset();

Where to control light
If a lighting controller device is added in the wizard configuration, there will be a pair of light on and light off callbacks for
user to control the actual lighting hardware on and off after the application is generated.

These callbacks are can be found in Scripting/User Scripts/LightingController category.

Light On
Light On function is called to turn on the light before an image acquisition that uses the light to acquire. For more information
about how to enable a light for an image acquisition and how to set its intensity for each channel, please refer to Cameras

320

How To

and Lights for Calibration on page 78 and Camera and Lights for Alignment on page 116.

The signature of Light On is as below:

public void Light_On(Int32[] Channels, Int32[] Intensities)

Input Name Type Description
Channels Int32[] The indexes of channels which should be turned on for current image acquisition

Intensities Int32[] The intensities of each channels which should be turned on

Light Off
Light Off function is called after associated image acquisition is finished. The signature of it is as below:

public void Light_Off(Int32[] Channels)

Input Name Type Description
Channels Int32[] The indexes of channels which should be turned off for current image acquisition

Note:
If there are multiple image acquisition positions for one vision task and a light device is used for each position, then
during run time, the light will be turned on and off at each acquisition position.

To control an actual light device, user needs to implement Light On and Light Off scripts based on specific light
controller and its communication protocol.

How To ... Change UI

How to change manual button properties
If the size of the manual button should be changed to fit its text display, or its text font size should be adjusted, you can
modify them through the properties of manual trigger HMI. Follow the steps below to change manual button properties:

1. Under edit mode of the program, open "Alignment_ManualModePage" within "AlingmentSystem" page category

321

How To

2. Select the Manual Trigger HMI controller

322

How To

3. From its properties, find "Button Appearance" group where you can see font size, height, margin and width properties
of buttons.

4. Change these property values to make them suit requirements. The changes of these values will have effects on all
the manual buttons to keep them unified.

How to add custom graphics on image display
Some applications may require extra graphics to be added onto default image display, this topic will guide you the process
though an example of adding labels and markers of features' coordinates on feature finding displays.

Each image display on AlignPlus is a Multiple Display control which displays multiple VisionPro records at the same time.
Each record has its own unique name in its multiple display. In this example, the feature finding multiple display has four
records in it: Camera0Pos0, Camera1Pos0, Camera0Pos1, Camera1Pos1. You can find these names by opening the image
display page and check its "DisplayNames" property.

323

How To

Different record names are separated with ";" or ",".

The feature finding image display uses VisionPro records from DisplayRecordGenerator in feature finding task. By default,
DisplayRecordGenerator directly uses the records output from FeatureExtractorSubTask.

To add labels on display, we can insert a script block between FeatureExtractorSubTask and DisplayRecordGenerator to
add labels to default records.

Here are the steps:

324

How To

1. Add a script block to feature finding task, rename it as "AddLabelToRecords".

2. Set its input and output pins as below:

RuntimeFeatures will provide features coordinate information for labels.

3. Link the input pins to FeatureExtractorSubTask's thrid and last pin, the ouput pin to DisplayRecordGenerator last
input pin as shown in modified task above.

4. Set the script block's condition the same as FeatureExtractorSubTask's, so that it also only gets called when all
images are acquired at all positions.

5. Add "System.Drawing.dll" and "Cognex.Designer.AlignPlus.Alignment.dll" to script block's references

6. Add "System.Drawing", "Cognex.Designer.AlignPlus.Alignment", "Cognex.VisionPro.Implementation, and
"Cognex.VisionPro" to script block's name spaces.

325

How To

7. Within the script block, implement the following code.

326

How To

8. Run the feature finding task and see the result.

How to customize UI using Navigation Tree
Navigation tree manages page display in setup mode, it is automatically generated by configuration wizard during program
generation with Displays, Calibrations, Alignment and System top-down tree structure. However, it also allows user to move,
add, rename, hide, or delete a page in edit mode to satisfy certain HMI customization requirement. To enter its edit mode,
double click "HMINavigation" under Components in the AlignPlus program. There will be a pop-up page for you to edit.

HMINavigation edit page consists of two areas: Tree View and Work Space.

Tree View area shows a preview of the result navigation tree. Work Space area is for editing each page's categories, icons
and user accesses.

327

How To

1 Icon for current page

2 Display name for current page on HMI, here localization is used to
translate the name into local language

3 Parent group the current page belongs to

4 The name of the page to be displayed

5 An auto-generated mark indicating whether the selected page is a
valid page in edit mode

6 l Dropdown: When it is checked on, navigation tree will expand
all sub pages of current page in run time, but user can choose
to collapse them on HMI.

l Expands: When it is checked on, navigation view will forcefully
expand all sub pages and refuse to be collapsed.

l Admin/Engineer/Operator: when it is checked on, the page will
be visible for Admin/Engineer/Operator, otherwise, it is invisible
to its selected user.

Hide unnecessary pages
AlignPlus displays all available pages in navigation tree by default though not all of them are always necessary. It is up to
user to decide whether to hide some. To hide a page, just check off the front check box of a selected page.

Add a new page
Follow the steps below to add a new page.

328

How To

1. Create a new page and set it's size the same with other reference pages in the same group.

For example, here is the property information of "LoggingSetupPage":

Apply the same X, Y, W and H of the reference page to the new page.

2. Edit the new page according to customer's requirement

329

How To

3. Add a localization tag for the page name

4. Add the page to HMINavigation component

Click "Add" button, choose an icon for it, use the newly created localization tag for "Name", choose a parent node
(here is "System"), and then select the page name you created and check the user accesses.

330

How To

5. After all is set, the new page will automatically be added under the button of the parent group. The displayed name in
tree view is what you have defined in localization for the current language. If you would like to move the page to a
different position within the group, just click "↑" or "↓" buttons to move it up or down.

6. Run the program and see if new page is added properly.

Remove a page
Select the unwanted page, and then click "Remove" button to remove it. This only applies to customized pages, if it is an
automatically generated page, user can not delete it but can hide it instead.

How to localize
AlignPlus provides Chinese and Korean language localization for HMI, user just needs to select the language on the top bar
of the main GUI. Here is an example of default Chinese and Korean localization results.

331

How To

l Chinese

l Korean

Notice that, not all items are translated. However, in case where a particular item needs to be changed to a different name to
make it more meaningful in a specific application, users can customize local names through two ways: 1) use Localization
function in Congex Designer; 2) modify language files of the project.

Localize in Cognex Designer
Localization function can be found in "System" category in edit mode. Double click it to open the edit window.

Localization maintains one table of tag names, default names, and translated names for each language type. Filter here can
be used to search specific tags using keywords; Language is the target language that one would like to translate into.
Column Tag Name lists names of tags used for localization. Column Default String lists default names of localization tags
shown on HMI when English is chosen. Column Translation lists the translated names of localization tags for the current
selected language.

The empty cells left here under the selected language are for users to input according to specific local names used in
projects.

332

How To

Here is an example to rename feature finders:

In this project, "Features0" and "Features1" are not meaningful to users, instead, specific part name such as "Pol" or "Panel"
makes more sense. Therefore, you can translate "Features0" and "Features1" to "Pol" and "Panel" .

After the translation, on run time HMI you will find that the former "Features0" and "Features1" have been replaced with "Pol"
or "Panel".

l Name changes in Navigation tree:

333

How To

l Name changes in specific pages:

Localize in language files
Another place to customize local names is through editing language files under "Languages" sub-folder of your project
folder.

After the modification, switch the language to the modified language to load the changes.

How To ... Change Log

How to get alignment result in AlignPlus program
The final alignment/assembly result is available in SendResultToPLCCallBack function.

Every time when a vision task finishes running, it will call TaskScheduler's call back function AcknowledgeTaskResults, in
which UpdateResult will be called. UpdateResult then will call SendResultToPLCCallBack where you can get the alignment
result if the vision task is triggered by a GP/GPA/LFGP command.

The signature of SendResultToPLCCallBack is:

public void SendResultToPLCCallBack(string commandResult, Int stepID, Int GPStepID)

334

How To

Input Name Type Description
commandResult string The result string at given command

stepID int The StepID of the current task being called by the command

GPStepID int The StepID of the pose computer task when LFGP command is used

Below is an example of getting x, y, theta values from GP, GPA, or LFGP command result string:

How to add data in alignment log
When more items need to be added into the default alignment log file (see more information in Logging Setup on page 197)
, two ways of adding them are at your disposal.

Add by script block in alignment task
This way applies when extra data is to be added to the right side of the last column in alignment log .

In alignment task, GenerateResultsPublisherAndLogger sub task has an open input pin named "UserLogData", this pin
provides a window for user to add extra data to current station's alignment log file.

Suppose you want to log tact time of feature finder task, here are the steps:

335

How To

1. Add a script block in alignment task, and configure its output pin as an OrderedDictionary object

2. Link the output pin to "UserLogData" input pin of GenerateResultsPublisherAndLogger

3. Within the script block, add "System.Collections.Specialized.dll" to its references.

4. Add the following code in the script block (The task name here should be the alignment task name in your own
program).

5. Run program and run feature finding and alignment, then check the log file. There should be a extra column named
"TactTime_Features0" at the end of the log file with tact time data.

Add in log format callback function
If you want to insert columns in the default alignment log extra data, you achieve so in the log format call back function.

At the end of an alignment task, AlignPlus will call a script named as "<Alignment Name>_LogFormatCall" where alignment
data is logged. The Alignment Name here is the name of the task. If a program has multiple alignment tasks, there would be
multiple log format callbacks so that each task will have its own logging function.

336

How To

The signature of log format call back is:

public void AlignmentTaskName_LogFormatCallback(CogDictionary resultsDict, List<string> orderedResultKeys, string errorMsg,
List<string> csvHeader, List<string> csvData)

Here are its arguments.

Argument Type Description
ResultsDict CogDictionary A dictionary of all saved alignment results

orderedResultKeys List<string> A list of key names whose data needs to be logged

errorMsg string Error message to log when alignment task fails

csvHeader List<string> The list of column names, by default it is the same with orderedResultKeys

csvData List<string> The list of data in string format extracted from ResutsDict using key names from
orderedResultKeys

The following code shows an example to insert tact time after "ErrorCode" column.

Here is the alignment log result:

How To ... Change Recipe

How to modify recipe
Modify Product Recipe
There are times when extra tags need to be added to Acquisition, Calibration, or Alignment recipes. For example, hand-eye
calibration teaching pose (the center pose of calibration loop) should to be save into Calibration recipe so that it goes with
specific calibration recipes. Here are the steps to achieve it:

337

How To

1. Create tags for teaching pose X, Y, Theta values

2. On the HMI, create text boxes to show current teaching pose, and bind X, Y, Theta values with these created tags,
respectively.

3. Open one of the Calibration recipes and, add these three tags into it.

338

How To

4. Create a button besides the text boxes on HMI; within its OnButtonClicked event, add code to obtain teaching pose.

Here is an example of using stage's current pose as teaching pose:

Enable Recipe Saving
When user changes the value of a customized tag which has been manually added to one of the
acquisition/calibration/alignment recipes, you may want to remind him/her to save recipe before the program is closed.
However, the product recipe page in this case shows nothing is changed and thus no need to save recipe. This is because
the product manager only monitors the value changes of auto-generated tags when the application was generated by
configuration wizard, and decides whether to enable recipe saving or not. To change this, you can add a script as below to
force product recipe to recognize data change and enable its recipe saving function:

$SystemState.CalibrationRecipeDirty = true;

After the script above is called, the product manager will render the product recipe page as below for you to manually save
recipe or remind you of recipe saving if you directly exit program without saving.

If you want to save recipe right after the tag's value is changed, you can also call product manager to save current recipe
after notifying the changes.

$SystemState.CalibrationRecipeDirty = true;

$Components.ProductManager.SaveCurrentRecipe();

Modify Exit Recipe
If values of some tags should be preserved after the program is rebooted(for example: PLC's IP address), you can add these
tags to SettingsAtExit recipe. This recipe will always execute recipe saving automatically before program is closed, you do
not need to add any extra script to save them.

339

How To

How to manage other recipes
In case you do not want to make changes to default acqusition/calibration/alignment recipes, you can create your own
custom recipe to manage extra tags. For detailed steps, please refer to Cognex Designer User Guide/Developing a Cognex
Designer Project/Recipes on how to create a new recipe, manage it on UI, etc.

You can create separate recipe saving function for custom recipes, or utilize the default product manager for custom recipe
saving.

Here are steps for the latter option:

1. Mark product recipe as dirty when there is any data change in your custom recipe

$SystemState.CalibrationRecipeDirty = true;

Note: You can also mark acquisition or alignment recipe as dirty, though none of them including calibration
recipe has any change, this function only informs product manager to be ready to save.

340

How To

2. Add custom recipe saving function in current product manager.

"OnSave" script of ProductManager component is a call back function whenever product manager saves recipe.

Add your custom recipe saving function here will make product manager add your custom recipe saving to its saving
list.

How To ... Change workflow

How to change 4-Point Align to 1-Point Align
AlignPlus program allows user to change the quantity of alignment points without rerunning configuration wizard if it does
not involve recalibration. This topic will introduce two examples of this type of changes: 4-camera based, and camera
shuttling based.

4-Camera Based
In this application, one-part alignment used to use four cameras needs to be modified to only use one camera due to model
change.

341

How To

The places where user needs to handle for model change are camera acquisition, vision tool, and recipe. Follow these steps
to change model:

1. Use "Save As" function to create a copy of current product recipe

2. Disable unused cameras

Disable unused cameras in feature finder's exposure setting under Alignment/Camera and Lights/Exposure
Settings.

3. Save current product recipe to save camera disable/enable information to Alignment recipe.

342

How To

4. Modify vision task to find features of new model

Open feature finder setup page after one image acquisition. Delete feature finders under unused cameras. Use one
PatMax finder to locate one feature or two point finders (PatMax finder/Corner finder/Custom Point Finder) to locate
two features on new model under the remaining camera.

5. Train golden pose for new model

6. Save current product recipe again to save golden pose and vision tools into Alignment recipe.

After this, the program is ready to run.

Camera Shuttling Based
In model change of this application, one-part alignment used to use 2 shuttling cameras acquiring four images now needs to
be changed to only use one camera acquiring one image at one position.

The steps to achieve this is the same as in the 4-camera based case except that:

n In 4-camera based application, the command to call feature finding task does not change before and after model
change.

343

How To

n In camera shuttling based application, the commands are different in quantity and parameter before and after model
change.

Before model change, two commands need to be sent to vision system to finish feature finding. One is for acquire
only, the other is for acquire and process.

Position Action

Position 0 Acquire Only

Position 1 Acquire and Process

After model change, since position 1 does not need to acquire image anymore, only one command is needed for
position 0: acquire and process, to run feature finder.

Position Action

Position 0 Acquire and Process

How to get stage's current pose for manual buttons
By default, manual trigger HMI controller assumes current stage is always at its origin by setting X, Y, Theta parameters in
commands as 0. This works well if the purpose of manual trigger is to configure vision tasks or test program workflow, but not
when the purpose is to further test align accuracy since stage's current pose is not involved in pose calculation. However,
manual trigger HMI controller also provides a callback function which allows user to acquire stage pose before sending the
manual triggered command out to program. The callback function is named "GetStagePosition", and here is the workflow of
manual trigger process wherein GetStagePosition is positioned.

Once any button on manual trigger HMI is clicked in run time mode, the manual trigger HMI controller will first call
GetStagePosition where stage pose can be obtained and sent back to manual trigger controller. Following that, the
controller will send the command with updated X, Y, Theta parameters of stage pose to CommandHanlder to let the program
finish the rest of the vision task. Meanwhile, manual trigger controller will also call another callback function named
"CommandSentCallback" where user can get the sent-out command string. CommandSentCallback can be used for logging
purpose or user can just leave it as it is since it has no effects on the main process.

The two callback functions can be found under "Scripts" option of context menu by right-clicking the manual trigger HMI
controller in test mode.

344

How To

GetStagePosition
The signature of GetStagePosition is as below:

public System.Tuple<double, double, double> GetStagePosition(int StepID, string ButtonName, string CommandKey)

Inputs

Item Type Description
StepID Integer The StepID of requested task

ButtonName String The name of button that has been triggered

CommandKey String The Command Key that of the command that sent by the triggered button

Output

The output is x, y, theta values in Tuple format.

Note: All buttons on the same manual trigger HMI share the same GetStagePosition callback function, user can decide
which stage's pose is to return depending on input StepID.

CommandSentCallBack
The signature of CommandSentCallBack is as below:

public void CommandSentCallBack(int StepID, string cmdSent)

Inputs

Item Type Description
StepID Integer The StepID of requested task behind the triggered button

cmdSent String The final command string sent to CommandHandler which later calls corresponding task

How to run two independent pose computers for two parts in one image
In some alignment applications there are two independent parts within the same field of views of cameras which require to
be located separately. In the example below, there is a white protect film on the black screen, the relative pose between film
and screen is not fixed. The vision system's task here is to find where the film is(marked in red) and then locate where the
screen is(marked in blue), so that the machine can first remove the film, and then align the screen.

345

How To

Wizard Configuration
In these kind of applications, user usually does not want to acquire images twice for each part and run two independent
features finder as that will increase processing time. Rather, user would like to acquire once, run one features finder to find
all features together, and compute two poses using features from each part. To achieve that, here is how wizard should be
configured.

In this configuration, there are two alignment components, both of which use all features found in Features0 for pose
computing as AlignPlus cannot tell which feature belongs to which part. Therefore, the auto-generated alignment tasks will
run through exactly the same process with the same inputs and outputs. However, this configuration provides a good
structure for you to customize upon.

Feature Finding
To start with, we need to find all features first as shown below:

346

How To

There are four corner finders inside Features0, Finder00 and Finder 02 find the two corners of the screen; Finder01 and
Finder03 locates the corners the film.

Customization
The goal is to let alignment0 run pose computing for film, and alignemnt1 for screen. Instead of all alignment tasks using all
features, we can filter the features inputs so that each task only receives features it absolutely needs.

Here is where filtering takes place:

The FeatureAndCommandSubscribers subtask in the alignment task is responsible for subscribing train time and run time
features and their commands from corresponding feature finding task. Its second output pin is a list of run time features, last
output pin is a list of train time features. As displayed below, it uses all features from the feature finder by default .

To filter out those unwanted train time and run time features, one can insert two script blocks between
FeatureAndCommandSubscribers and OffsetCompensation.

347

How To

For Alignment0, only features from film are needed (Finder01 and Finder03). Here are the steps of customization:

1. Add a script block named as "FilterFeatures", configure its input and output as below:

2. Add Cognex.Designer.AlignPlus.Alignment.dll to its references.

348

How To

3. And "Cognex.Designer.AlignPlus.Alignment" to its name space.

4. Inside the script, input the following code:

5. Copy the block and rename it as "FilterTrainFeatures", link its input pin to trained features of
FeatureAndCommandSubscribers subtask, and output pin to OffsetCompensation subtask.

After the customization, the alignment0 will only handle features from film as shown below:

For Alignment1, the customization is exactly the same except the feature names in its script blocks should be "Feature00"
and "Feature01" representing the screen part.

How To ... Customize Functions

Customize Measurement Types
Current AlignPlus version only provides three measurement types: point to point, point to line, and line segment to line
segment. If a user needs other types of measurement, such as circle to circle, blob to blob, he/she can customize them by
creating VisionPro toolblocks following the input and output requirements listed below.

349

How To

Input Requirements
Inputs Type Description Necessity

InputImage Cognex.VisionPro.ICogImage To receive the input image
from a camera

must have, must keep the input name

Input1 Decided by user The first element of
measurement input

must have, must keep the input name

Input2 Decided by user The second element of
measurement input

optional, can be exempted if the toolblock
is not to measure between two features

LabelAngleInDeg Double Result label display angle
on image display in degrees

must have, must keep the input name

Output Requirements
The outputs of custom toolblock can be named differently depending on user's preference, such as "d", "X", "Y", etc. These
outputs names would be available in the "Measurement Source" column of a tolerance check on AOI Setup HMI for the user
to select which value to check if the measurement type were the user customized type.

Users can also specify on how the measurement graphics should be displayed on image display through customizing
"OutputGraphicCollections" output.

The requirements for the OutputGraphicCollections output are as below: it must be a Dictionary<String,
Cognex.VisionPro.CogGraphicCollection> type of object, in which the key strings in the dictionary must come from the
names of the other outputs, such as "d", "X", "Y", so that when the inspection task uses these graphics, it knows which output
values the graphics belong to. However, users does not need to create graphics for all output values, the inspection function
will automatically generate graphics for values who does not have the corresponding graphics in OutputGraphicCollections
output.

Example of custommeasurement type
Here is an example of a customized circle to circle measurement toolblock. For detailed information about how this toolblock
is configured, please open "PointPoint.vpp" under
"C:\ProgramData\Cognex\Designer\Plugins\Cognex\AlignPlusTemplateApplication\Data\Vpp" for reference.

350

How To

After the custom toolblock is created, save it to the following path:
"C:\ProgramData\Cognex\Designer\Plugins\Cognex\AlignPlusTemplateApplication\Data\Vpp". Here the name of the custom
toolblock is "CircleCircle".

In the run mode of AOI inspection application, find two circles in its features finder and save the configuration to the
alignment recipe.

Reboot Cognex Designer to load the newly added VPP files for the AlignPlus application. After that, you should be able to
find the "CircleCircle" in Measurement Type options on the AOI Setup page. Select the two circles added in last step as the
Input1 and Input2, and click "Apply" to confirm.

351

How To

After the circle to circle measurement item is added. Its output "d" is available for users to select as the Measurement Source
of a tolerance check.

Run One Time Calibration Step by Step
This topic gives an example of one time calibration in an alignment application for users to understand how to use one time
calibration step by step.

In the alignment application below, the two cameras shuttles between two positions to locate the part during run time
alignment. To make mode change faster and easier, customers want to use one time calibration to avoid recalibration during
model change.

The wizard configuration for this application is configured as below:

352

How To

After the wizard finishes running, there will be two one time calibration related tasks be generated in the program.

1. OneTimeCalib Task

OneTimeCalib task is used to run one time calibration for each camera. The task is similar with a hand-eye
calibration task which also acquires images at given positions until all positions specified in a calibration loop are
covered, and in the end runs hand-eye calibration calculation.

To trigger one time calibration for a camera, one can directly trigger it via "ACB, AC", or "HEB, HE, HEE" commands
using the task StepID defined in CommandHandler script of generated porgram. Each camera has an independent
StepID for one time calibration as shown in the screenshot below. For more information about the related commands,
please refer to Motion Guided Hand-eye Calibration Commands on page 1.

353

How To

Another way to trigger an one time calibration is using manual buttons in manual mode. However, users needs to
customize the x, y, theta values of camera position at each calibration point by implementing the manual button
control's "GetStagePosition" callback function, or input absolute ranges in the Calibration Loop UI on page 1. For
more information about how to customizing GetStagePosition callback function, please refer to How to get stage's
current pose for manual buttons on page 344.

2. OneTimeCalib_ComputeCameraOffsets

OneTimeCalib_ComputeCameraOffsets task is used during mode change to recalculate cameras' positions in
Home2D after users' inputs of these cameras' Gantry2D coordinates. This task is triggered by "Calculate Offset"
button click on Camera Pose Adjustment page under Calibration category in Setup mode of the application.

Process to Calibrate
In this application, users can run hand-eye calibration and cross calibration first, then run one time calibration for each
camera. Or run one time calibrations first, then run other calibrations.

The graphics below illustrates the process of hand-eye calibration and cross calibration of the stage.

354

How To

After the calibration process above, record each camera's acquisition positions in Gantry2D for hand-eye calibration and
cross calibration, and then input them into "X Calib Gantry" and "Y Calib Gantry" columns on Cameras Pose Adjustment
page under Calibration category in the setup mode of the application.

Click "Calculate Offsets" button and then "Save Recipe" button on the same page to recalculate and save the changes.

One time calibrations for two cameras are illustrated as below. In each calibration process, the camera is moved to a 3X3
position grid to take images of the stationary checkerboard plate attached on the stage. The two calibrations are done
independently.

355

How To

Since the vertices of the checkerboard plate already have Home2D coordinates through the hand-eye calibration and cross
calibration, and they also have the Gantry2D coordinates after one time calibration, with this medium the transform from
Gantry2D to Home2D can be established.

Mode Change
When a mode change requires cameras to be repositioned, with the transform from Gantry2D to Home2D established during
one time calibration, users only need to input cameras' new positions in Gantry2D, then the vision system will transfer them
into positions in Home2D and update the corresponding hand-eye/cross calibration results without the need of recalibration.

On the Cameras Pose Adjustment page under Calibration category in the setup mode of the application, input "X RunTime"
and "Y RunTime" in Gantry2D for each camera acquisition position under new model for both hand-eye and cross
calibrations.

And then click "Calculate Offset" button to trigger the OneTimeCalib_ComputeCameraOffsets task to update the new camera
positions in Home2D to the hand-eye calibration and cross calibration results. And click "Save Recipe" to save the changes.

After this, users can directly run alignment.

356

How To

Reference

Space Tree
In AlignPlus, many spaces are involved in calculation, each space serves a different purpose, in order to understand which
space are available in AlignPlus and how to use them, here we need first understand the concept of space tree.

Space tree is a coordinate class in VisionPro to track spatial transformations applied during image processing as well as
map coordinates from root space to any defined user space and back again. The coordinate space tree for any image can
be accessed through its CoordinateSpaceTree property.

Root Space and Pixel Space
For every image that is acquired from camera or loaded from image file, VisionPro will give it a root space(named as "@")
which originated at upper-left corner of the image. Root space is exactly the same with image space(named as "#") before
image undergoing any image processing.

However, if original image is being clipped, resized or transformed, though image space alters based on new image after
every action, root space remain the original space in which each pixel's coordinates is tracked and mapped to original
image. Whenever a VisionPro tool modifies the pixels of an acquired image, it automatically updates the root space to reflect
any changes in the location of image features.

Here is an example, the pixel is at (83.7, 61.5) in the original image.

After the image is scaled down by 2, the corresponding point in new image's pixel space should be at (41.85, 30.75).
However, if user choose to output coordinates in root space, it is still (83.7, 61.5).

357

Reference

The following figure shows how pixel space is related to the root of the coordinate space tree:

In this figure, the purple arrow represents the transformation between the pixels of the image and its root space; this
transformation incorporates all of the image processing adjustments. You can obtain the transformation between the pixels
of the image and its root space through the image's PixelFromRootTransform property. Each of the green arrows represents
a transformation between root space and user defined space (which will be introduced in the following paragraph) in the
image's coordinate space tree.

358

Reference

User Spaces
User can build their own spaces upon root space using certain VisionPro Tools like generating branches on the trunk of a
tree. Each user space in the space tree has a parent coordinate space related by one or more transformations. All user
spaces can trace their ancestry back to the root space.

New coordinate spaces can be generated through the following VisionPro Tools:

l CogFixtureTool

l CogFixtureNPointToNPoint Tool

l CogCalibNPointToNPoint Tool

l CogCheckerboardCalibration Tool

l Manually configuring and passing a 2D Transform (available)

Here is an example of space tree of one image. The image was first processed by CogFixtureTool which added a "Fixture
Space" to the root space, and later checkerboard calibrated which added a "Checkerboard Calibration Space". The
corrected image of checkerboard calibration then runs NPointNPoint calibration which added a "N-Point Calibration Space".
At last, another Fixture Tool which creates a "Fixture2 Space".

359

Reference

After all those spaces are built, user can pay visit to every space through the image's CoordinateSpaceTree property in
which spaces are stored with parent coordinate spaces tracing back to root space. These spaces are outputs of every tool,
but they don't belong to tool itself, they belong to the image being processed.

Item Space Name Get From Unit Space
Transforms

1 @ Born pixel @ <=> Image
Space

2 @\Fixture CogFixtureTool pixel @ <=> Fixture
Space

3 @\Checkerboard Calibration CogCalibCheckerboard Tool mm/inch Checkerboard
Calibration
<=> Root
Space

4 @\Checkerboard Calibration\NPoint Calibration CogCalibNPointNPoint Tool mm/inch NPoint <=>
Checkerboard
Calibration

5 @\Checkerboard Calibration\NPoint
Calibration\Fixture2

CogFixtureTool mm/inch Fixture2 <=>
NPoint

Space Names
Each calibration tool has an default calibrated space name.

Default calibrated space name of CogFixtureTool is "Fixture".

Default calibrated space name of CogCalibCheckerboardTool is "Checkerboard Calibration".

Default calibrated space name of CogCalibNPointToNPointTool is "N-Point Calibration".

360

Reference

However, user can rename it to make it unique in one space tree.

Note: All space names in one image should be unique, otherwise VisionPro will throw a name space conflict exception.
If the same tool is used more than one times in one image, then user needs to manually change their calibrated space
names to make them unique.

View Space Tree

All spaces within a space tree of an image can be viewed in VisionPro Floating Display by clicking button in the toolbar
of VisonPro job/tool edit window. By mouse-hovering over the image, the Display will show pointer's coordinates in current
selected space. You can select a different space in the drop-down list below and see how coordinates change in different
spaces.

However, the change of selected space in Floating Display is only for display purpose and will not affect image's current
selected space.

361

Reference

Space Selection
Selected Space
At any given time, one space within the coordinate space tree is designated as the selected space for a given image. The
selected space is the coordinate system in which all VisionPro tools that operate on the image return results (such as
locations and distances) and in which the tools interpret input data (such as regions of interest). User can set the selected
space for an image using the image's SelectedSpaceName property.

When you create a new image using a calibration or fixturing tool, the tool adds a new coordinate space to the input image's
coordinate space tree and automatically selects that space as the new image's selected space name, so does the other
calibration tools.

Different space serves different purpose
l Fixture space

Fixture space created by fixturing tool is a user space defined based on parts' run time position. By using this space,
other tools' ROI (region of interest) can follow the part.

Checkerboard calibration tool does changes as follow:

1. Establish transform between input image's space and Fixture space.

2. Add "Fixture" space to image space tree.

3. Set "Fixture" space as selected space of its output image.

362

Reference

Note:
CogFixtureTool doesn't change unit of input image. Therefore, if input image is in pixel, then output image is
also pixel. If input image is in mm, then output image will also be in mm.

Here is an example:

In the vision task below, the CogFixtureTool runs on raw image, and output an new image with a new space
"Fixture" as its selected space. Then the follow-up CogCaliperTool result which measures the part width will be
in pixel, not mini meter.

363

Reference

l Checkerboard Calibration Space

Calibration space is generated by checkerboard calibration tool. Checkerboard calibration tool does the following
changes:

1. Establish transform between input image's space and checkerboard calibration space.

2. Add "Checkerboard Calibration" space to image space tree.

3. Set "Checkerboard Calibration" space as selected space of its output image.

4. No matter what unit input image space is using, "Checkerboard Calibration" space uses real world unit (mm
or inch depending on user's input) as its unit.

Every VisionPro tool which directly use this output image will get the result(such as location, measurement) based on
checkerboard calibration space.

The most typical vision application using checkerboard calibration space is measurement because measurement
requires no absolute positions of features but their relative distances.

In order to let measurement tool follow run time part, CogFixtrueTool is often used after checkerboard calibration and
followed by measurement tool. Here is the one example:

CogFixture tool works on the output image of CogCalibCheckerboardTool whose selected space is "Checkerboard
Calibration". And then CogFixtureTool outputs image with a new space named "Fixture" as its selected space. The
measurement tool CogCaliperTool works on Fixture space. This time the measurement result will be in mm instead of
pixel.

364

Reference

l NPoint Space

NPoint space is the default space created by NPointNPoint Tool.

NPointNPointTool maps the input image's space to user defined space(such as Stage 2D space) using shared
paired features whose coordinates in both spaces are known. NPointNPointTool does the following changes:

1. Establish transform between input image selected space and motion 2D space.

2. Add "NPoint" space(stands for Motion 2D space) to image space tree.

3. Set "NPoint' space as selected space of its output image.

4. No matter what unit input image space is using, "NPoint" space use mm/inch based on user's input for Motion
2D coordinate.

Every VisionPro tool which directly uses NPointNPoint tool's output image will get the result(such as location,
measurement) based on NPoint space. NPointNPoint tool is wildly used in object locating applications such as
picking or placing, it has similar function as hand-eye calibration in AlignPlus. The different is NPointNPoint tool only
uses few points to map Raw2D to Motion 2D, and requires very skillful teaching process and manual inputs, so it's
much less convenient and also has low accuracy. However in applications which doesn't require high-accuracy,
NPointNPoint tool is an good option.

l Home2D Space

The default selected space of output image of hand-eye calibration tool is named as "Home2D". Every VisionPro tool
which directly use this output image will get the result(such as location, measurement) based on Home2D space.

Similar as NPoint Space, Home 2D Space is also related to Motion 2D, but not equal to Stage 2D, it is ideal orthodox
coordinate which shares the same origin as Stage2D when motion is at initial position. An transform between
Stage2D and Home2D is maintained in Hand-eye calibration result.

In picking, placing or alignment applications, features on image are extracted and located in Home2D, then vision
calculated how much motion should move first in Home2D, later mapped to Stage2D and forward it to motion. So
Home2D played an very important role in such applications.

Change Selected Space
There are mainly three ways to change selected space for different purposes:

1. Use different input image to change selected space

As shown above, different fixturing/calibration tool has different selected space for output image. By using those
output images as input image, vision tool will work on the corresponding selected space.

365

Reference

2. Manually change default space of an output image

User can also manually change selected space for output image in fixturing/calibration tool.

By default, those tools will set the newly generated space as selected space. However, if user choose "Uncalibrated
Space", then the output image's selected space will not change, and be the same as input image's.

3. Manually change via scripting

At any time, user can specify selected space of a particular image via scripting.

For example:

Use Different Space for ROI and Returned Result
In some applications, the vision tools needs to use different spaces for ROI and returned result respectively.

In the following example, Cam0Image0 is an image in Home2D space. CogFindCornerTool wants to locate the corner point
of the image. If CogFindCornerTool use output image from CogFixtureTool, both CogFindCornerTool's ROI and returned
result will based on current run time part's Fixture space. However, vision actually wants to locate corner in Home2D so that
it can guide how much motion should move. So CogFindCornerTool should report corner point result in Home2D instead of
in Fixture space.

366

Reference

In the picture below, corner point's coordinates in Fixture 2D doesn't change in two images, but its Home2D coordinates
actually changed a lot.

367

Reference

In order to follow the fixture space to find corner and report result in Home2D, CogFindCornerTool needs to use different
space for ROI and returned result.

Here is the way to configure it:

l Use input image with Home2D as selected space

l Manually select fixture space for ROI selected space

368

Reference

Get Transform in Space Tree
The coordinate space tree includes methods that let user obtain a composed transformation that can map points between
any two spaces anywhere in the coordinate space tree.

If user request a transformation using the GetTransform method of an image, what's needed only is the names of the
coordinate spaces between which user want to transform points. In VisionPro, "." stands for the currently
SelectedSpaceName, "@" stands for the root space, "#" stands for pixel space. For user spaces, just use their names.

Here is an example to get the transform between Home2D and root space:

Space Tree in AlignPlus
In AlignPlus, there are mainly two spaces to consider in space tree:

1. Checkerboard Calibration Space (corresponding to Plate2D)

2. Home2D Space

Checkerboard calibration space is a by-product of checkerboard calibration, it's built on corrected image and originated at
Plate2D.

Home2D space is generated through hand-eye calibration or manual calibration which maps Root2D (equal to Raw2D) to
Home2D so that every feature located in the image can output Home2D coordinates.

369

Reference

Space Tree generated by Hand-eye Calibration or Manual Calibration
l Checkerboard-based hand-eye calibration or hybrid manual calibration

Both checkerboard-based hand-eye calibration and hybrid manual calibration use checkerboard to correct lens
distortion and camera perspective distortion. So the space tree for each camera will have both checkerboard
calibration space and Home2D:

Note: Once root space to checkerboard calibration space, and checkerboard calibration space to Home2D
space transforms are established, Home2D to root space transform is also established. User can directly use
image's GetTransform method to get transform between any two spaces in space tree. (To get Home2D from
root space transform, call GetTransform("Home2D", "@")).

l Part-based Hand-eye Calibration or Non-hybrid Manual Calibration directly build Home2D upon root space.

370

Reference

Spaces generated by Cross Calibration
Cross calibration itself doesn't create new Home2D, but maps Home2D from one set of cameras to another set of cameras
as they all share the same Home2D.

l Checkerboard-based Cross Calibration

For checkerboard-based cross calibration, the same calibration plate was used for Camera1 and Camera2, since
Camera1's Home2D and checkerboard calibration space transform is already known, Camera2 then can copy this
transform and attached it to Camera 2. After calibration, both cameras have their own root space to checkerboard
calibration space transforms but share the same checkerboard calibration space to Home2D transform.

l Part-based Cross Calibration

In part based cross calibration, one run time part or dummy part was transferred from Camera1 to Camera2. The
features on part under Camera1 already have Home2D coordinates. When they're moved to under Camera2, they'll
have new Root2D coordinates. However, their Home2D coordinates doesn't change, therefore, Home2D from
Camera2's Root2D transform can be calculated by mapping the two coordinate pairs. After calibration, both cameras
have their own Root2D to Home2D transforms. Whereas, the Home2D coordinate here are the same.

371

Reference

Copyright © 2020
Cognex Corporation. All Rights Reserved.

Printed in the USA

	Legal Notices
	Table of Contents
	AlignPlus Overview
	Release Info
	About This Release
	Release History
	AlignPlus 4.0
	AlignPlus 4.0.1
	AlignPlus 4.2.0
	AlignPlus 4.3.0

	Installation

	Create an AlignPlus Project
	Create an Empty Project
	What is Configuration Wizard
	Alignment System
	Devices
	Calibrations
	Finders
	Parts
	Alignments
	Settings

	Things to Consider before Configuration
	Devices
	Calibration
	Feature Finding
	Part
	Alignment

	Setup Examples
	Application I_Align to Base
	Application II_Align To Gripper
	Application III_Two Stages Alignment
	Application IV_Assembly Blind Transfer
	Application V_Assembly Guided Pick
	Application VI_Assembly Guided Place
	Application VII_Single Part Inspection
	Application VIII_Two Parts Inspection

	Export and Import Wizard Configuration
	Export wizard configuration
	Import wizard configuration

	Home Page
	Title Bar
	Work Mode
	Mode View
	Main Window
	Log View
	Title Bar
	Auto On
	Status Monitor
	Image Play Back
	Help
	Language Change
	User Change
	Exit

	Auto Mode
	Manual Mode
	SN Input
	Set Display
	Command Buttons

	Setup Mode
	Display
	Multiple Display
	Alignment Master Display
	Calibration Master Display

	Calibration
	Calibration Navigation
	Cameras and Lights
	Hand-eye Calibration
	Cross Calibration
	Calibration Results
	Cam Pos Adjustment

	GigE Camera Configuration
	Cameras and Lights for Calibration
	Global Settings
	Exposure Settings

	Hand-eye Calibration
	Hand-eye Calibration Training Parameters
	Looping Parameters

	Motion Analysis
	Motion Analysis Process
	Motion Analysis Setup
	Motion Analysis Image Display
	Motion Analysis Pose Generator
	Motion Analysis Result

	Cross Calibration Training Parameter
	Checkerboard Settings
	Parameters
	Change Checkerboard Parameters

	Calibration Results
	Cam Pose Adjustment
	One Time Calibration Results

	Alignment
	Aligment Navigation
	Camera and Lights for Alignment
	Global Settings
	Exposure Settings

	Configure Features Finder
	Point Features Finder
	Line Features Finder
	Generic Features Finder
	Multi-Part Features Finder
	Multiple Features
	Custom Multi Camera ToolBlock Finder
	AOI Feature Extraction

	Custom Pose Computation
	Alignment Custom Pose Computation
	Assembly Custom Pose Computation

	Manual Align Config
	Settings
	Run Time Edit Window

	L-Check
	Layout Graphic
	Feature Points
	Measurements
	Result Display
	Reset
	Apply and Save Recipe
	Run

	AOI Setup
	Measurement
	Tolerance
	Results

	System
	Alarms and Status
	Status
	Alarms

	Message Viewer
	Product Recipe
	Master Recipe and Sub Recipe
	Current Product Recipe
	All Product Recipes
	Orphan Sub-Recipes

	Camera Simulator
	Simple Mode
	Advanced Mode
	Run

	Communication
	Disk Cleanup
	Logging Setup
	System Logging
	Alignment Result Logging

	Screenshot Saving
	Settings
	Auto Capture Records

	Image Saving
	Settings
	Sub Directories
	Image Files

	Camera Status
	Camera Center Parameters
	Offset Compensation
	XYTheta Mode
	Compensate Based on Gaps
	How to compensate multiple features

	Placement Limit Checker

	Program Workflow
	TCP/IP Communication Devices
	Commands From PLC
	Results To PLC

	Customized Communication Devices
	CommandHandler
	Task Scheduler
	CommandHandlerCallback
	Tasks
	Task Execution Mode
	StepID

	Command String
	CommandArgs
	Task Workflow
	Hand-eye Calibration Task
	Hand-eye Calibration Loop Task
	Cross Calibration Task
	Feature Finding Task
	Alignment Task
	Subtasks

	General Tool Block
	Alignment
	Generic Features Finder
	Line Features Finder
	Lines To Lines Centering Block
	Point Feature Finder
	Points To Points Centering Block
	Stage Pose Computer

	Calibration
	Cal Plate Feature Accumulator
	Calibration Loop
	Checker Grid Feature Extractor
	Handeye Calibrator
	Stage Validator
	UltraCalibration Loop

	Image Corrector
	Run Calib Checkerboard Corrector
	Run Corrector
	Train Calib Checkerboard Corrector
	Train Corrector

	Utilities
	CogRecord Creator
	Dictionary Composer
	Publisher
	Result Logger Block
	Subscriber
	Tags Composer

	How To
	How To ... Acquire
	How to add 3rd party acquisition plugin

	How To ... Control Devices
	How to command stage to move
	Where to control light

	How To ... Change UI
	How to change manual button properties
	How to add custom graphics on image display
	How to customize UI using Navigation Tree
	How to localize

	How To ... Change Log
	How to get alignment result in AlignPlus program
	How to add data in alignment log

	How To ... Change Recipe
	How to modify recipe
	How to manage other recipes

	How To ... Change workflow
	How to change 4-Point Align to 1-Point Align
	How to get stage's current pose for manual buttons
	How to run two independent pose computers for two parts in one image

	How To ... Customize Functions
	Customize Measurement Types
	Run One Time Calibration Step by Step

	Reference
	Space Tree
	Root Space and Pixel Space
	User Spaces
	Space Names
	View Space Tree
	Space Selection
	Get Transform in Space Tree
	Space Tree in AlignPlus

